Paspen «ABTOMaTuKa. DJHepreTuka. IKT» B

Performance

Modeling and Analysis of Gloud Platform
Resources to Optimize Gloud Application

Introduction. In today's world, where dig-
ital transformation touches every aspect of our
lives, cloud technologies play a leading role in
making information resources flexible, scalable
and accessible. As the foundation for numer-
ous applications and services, cloud platforms
require constant optimization and adaptation
to changing usage conditions and user require-
ments. The complexity and diversity of cloud
system architectures, as well as the need to
ensure a high level of performance while re-
ducing costs, make the task of modeling and
analyzing the resources of cloud platforms ex-
tremely important.

Cloud applications, being distributed and
scalable in nature, require careful resource
planning and performance management. The
resource utilization efficiency of cloud plat-
forms directly affects the application speed,
reliability and availability to end users. In this
context, resource modeling helps to anticipate
the compute, storage, and networking needs
of applications and facilitates optimal alloca-

tion of these resources among different tasks
and services.

In addition, analyzing cloud platform re-
sources is important for detecting bottlenecks
in application architecture and performance.
It can identify inefficient resource utilization,
predict system congestion, and prevent poten-
tial service failures. This, in turn, helps to en-
sure high quality of service and improve user
satisfaction.

This research focuses on analyzing and op-
timizing cloud platform resources to improve
application performance. The practical part of
the work involves collecting Kaggle data from
different cloud platforms to develop embed-
ded monitoring tools. Key metrics such as CPU
utilization, network latency, input/output op-
erations (IOPS), and throughput, which are
critical for evaluating resource efficiency, are
analyzed.

The aim of the research is to develop meth-
ods for cloud resource management based on

data analysis, identify performance bottle- EEE]

B Tpyabl yHuBepcuteTta Ne1 (98) - 2025

necks and propose recommendations for op-
timizing the configuration of cloud systems.
Unlike traditional approaches, the focus is on
practical testing of real cloud infrastructures
and using the obtained data to formulate rec-
ommendations for improving the performance
characteristics of the systems.

The results show that data-driven resource
analysis and management can significantly
improve application performance, reduce in-
frastructure support costs, and improve the
overall user experience.

The results of this analysis underscore the
importance of creating a comprehensive ap-
proach to cloud platform resource manage-
ment that integrates existing work and offers
new solutions to improve application perfor-
mance, reduce costs, and improve user satis-
faction.

Research methods. Finally, ongoing
monitoring of data quality and model perfor-
mance is essential. As cloud environments
are dynamic, continuous data collection and
model retraining may be necessary to adapt
to changes in application behavior or resource
availability. Regular updates to the data col-
lection process can help capture new types of
performance metrics or changes in cloud in-
frastructure, ensuring that the models remain
relevant and accurate.

This comprehensive data management
framework ensures that the models developed
are not only robust and predictive but also
adaptable to the evolving needs of cloud re-
source management. By leveraging detailed,
high-quality data, cloud engineers and re-
searchers can significantly enhance the per-
formance and efficiency of cloud applications.
This data-driven approach supports the con-
tinuous evolution of cloud resource optimiza-
tion strategies, facilitating better performance
outcomes and more efficient resource utiliza-
tion in dynamic and often unpredictable cloud
environments.

To analyze the performance of cloud plat-
forms, I used data from Kaggle. This tool pro-
vides metrics such as average processor utili-

Dataset from Kaggle

zation (CPU), latency, input/output operations
per second (IOPS), and network speed. The
table below summarizes the test results for
popular cloud platforms.

This data was collected for standard virtual
machine configurations with equal amounts of
dedicated resources.

The data collected from the cloud platforms
was processed as follows:

Averaging: Average values were calculated
for each metric to minimize the impact of load
spikes.

- Outlier removal: Metrics that deviate sig-
nificantly from the rest of the data (outliers)
were excluded.

- Normalization: All metrics were brought
to a common scale for comparison.

The analysis model includes the following
key steps:

- Data Collection: Test scenarios such as

network throughput, disk read/write, and
compute operations are used.
- Platform Comparison: Performance is

evaluated by comparing key metrics (CPU, la-
tency, IOPS, network) between platforms.

- Bottleneck Identification: The model de-
termines which resources (CPU, memory, or
network) most limit application performance.

- Scalability: Evaluates the effectiveness
of increasing resources (CPU, memory) to im-
prove performance.

- Load Prediction: Uses historical data to
predict future loads and optimize resource al-
location.

The model provides detailed analysis of
cloud resources to identify the most efficient
configurations for given workloads.

Optimizing cloud application performance
is based on careful analysis and tuning of key
parameters that affect resource utilization and
system stability. One of the most important
aspects is the management of computing re-
sources. CPU utilization, or CPU utilization, is
an indicator of how efficiently computing pow-
er is being used. If utilization is consistently
above 80%, this signals the need for scaling.
Various strategies are used to do this: scale-

Platform Average CPU Average latency I0PS Network speed
utilization (%) (ms) (operations/sec) (Mbps)
Google Cloud 75 1.2 12000 900
AWS 80 1.1 15000 950
Microsoft Azure 70 1.3 11000 850
Alibaba cloud 65 1.5 13000 800

up virtual machines, add new server instances
(scale-out), or redistribute the load. Similarly,
RAM plays an important role. Lack of memory
causes frequent access to swap disks, which
reduces performance. To remedy this, use
more powerful virtual machine configurations
or optimize software algorithms to reduce ex-
cessive memory consumption.

Another critical area is network resources.
Network bandwidth, measured in megabits or
gigabits per second, determines how fast data
is transferred between server and client. If an
application encounters network bottlenecks,
the problem can be solved by increasing band-
width or using specialized networking solutions
such as content delivery networks (CDNs). Net-
work latency, measured in milliseconds, also
requires optimization, especially if servers are
located in remote regions. In such cases, it is
recommended to move servers closer to users
or use load balancers to distribute traffic more
evenly. Another important network parameter
is the stability of the connection, which is de-
termined by packet loss. High packet loss rates
cause delays and slow data transmission, so
networks are often reconfigured to minimize
this problem.

Load management is another key aspect.
Load balancing allows you to distribute traf-
fic between multiple servers, preventing them
from overloading. Both software solutions
(e.g. AWS Elastic Load Balancer) and hard-
ware load balancers for highly loaded systems
are used for this purpose. Dynamic scaling,
or autoscaling, helps adapt to changing load
demands. This technology automatically adds
or removes servers based on the current state
of the system. For example, autoscaling adds
servers when traffic increases and shuts down
redundant servers when load decreases.

The last but not least parameter is cost.
Optimizing performance often requires con-
sidering resource costs. Analyzing the cost of
CPU, memory, network, and disk usage helps
select the most cost-effective configurations.
For example, compute-optimized machines are
selected for compute-intensive applications,
and storage-optimized servers are selected
for data-intensive applications. Cost optimiza-
tion includes regularly reviewing the resources
used and switching to more favorable pricing
plans or platforms, if possible.

The practical part follows clear flow diagram
as shown in the Figure 1. Flow diagram starts
with the configuration initialization phase,
where the user sets the test parameters, in-
cluding the choice of cloud platform (e.g. Goo-
gle Cloud, AWS or Microsoft Azure), type of
resources (virtual machines, disks, network)
and test scenarios. The benchmark specifica-
tions are then loaded, which determines which

Paspen «ABTOMaTuKa. DJHepreTuka. IKT» B

[Intialize Configurations]

v

[Load Benchmark Specifications)

metrics will be measured, such as network
throughput, IOPS or CPU performance.

The next step is the deployment of cloud
resources, where the tool creates virtual ma-
chines through the API of the selected platform,
configures network settings and prepares the
infrastructure for testing. After successful de-
ployment, benchmarking begins. At this stage,
the tool measures key performance metrics
such as CPU utilization, network latency, and
I/0 speed.

After the tests are completed, this project
collects and analyzes the results. The data,
including metrics such as average latency,
network bandwidth and operations per disk,
is saved in convenient formats (e.g. JSON or

CSV) for further analysis. The report genera- EEH

B Tpyabl yHuBepcuteTta Ne1 (98) - 2025

tion phase then generates visualizations, ta-
bles, and recommendations that identify in-
frastructure bottlenecks and provide optimal
solutions. For example, if network bandwidth
problems are identified, the report may sug-
gest increasing network capacity or using CDN.

The final step is resource cleanup, which
automatically removes created virtual ma-
chines and other components to avoid addi-
tional costs. This structured approach allows
you to accurately measure the performance of
cloud platforms and, based on the data, make
informed decisions to optimize your applica-
tions.

Figure 2 shows the architecture of this tool.
It is @ modular system that provides a full cy-
cle of performance testing for cloud platforms.
The user interacts with the tool through a com-
mand line interface (CLI) or configuration files
where test parameters are set, including the
choice of cloud provider such as Google Cloud,
AWS or Azure, as well as resource types (vir-
tual machines, networks, storage) and test
scenarios. This data is passed to the scenar-
io management system, which is responsible
for processing the parameters and converting
them into test cases. To unify work with dif-
ferent cloud platforms, an abstraction layer is
used, which provides interaction with API pro-
viders, hiding the differences between them.

After configuration processing, the re-
source deployment stage begins. This process
includes creating virtual machines, configuring
networks, and connecting storage using the
APIs of the selected provider. Automating this
stage allows the user to focus on testing with-
out getting into the intricacies of infrastructure
management. When resources are deployed,
benchmarks are run. The benchmarks measure
key performance metrics such as CPU utiliza-

tion, network throughput, latency, IOPS and
disk speed. These metrics are collected during
test execution and stored for later analysis.

The collected data is processed, including
outlier filtering, normalization and preparation
in JSON or CSV formats. This allows the results
to be integrated with analytical tools such as
BigQuery or Data Studio for further analysis.
Based on the data obtained, reports are gener-
ated that contain graphs, tables and optimiza-
tion recommendations. The tool automatically
deletes created resources after the tests are
completed, which prevents additional costs
and simplifies infrastructure management.

The project also includes a logging mecha-
nism that captures every stage of the system's
operation, from configuration to results collec-
tion. This provides transparency and makes
it easy to diagnose problems that arise. The
tool's architecture is designed to be easily ex-
tensible. Users can add new benchmarks, sup-
port additional cloud providers and integrate
the tool with external systems.

Results. The survey collected and analyzed
cloud platform performance data. The testing
covered key metrics such as network through-
put, CPU utilization, input/output operations
(IOPS), network latency and other metrics that
reflect the performance of cloud systems un-
der different load conditions. Below are the re-
sults corresponding to the testing and analysis
phases, which have been visualized in images.

According to the test results of our written
tool, the network throughput on the investi-
gated platforms reached the maximum value
of 1017 Mbps. This result was consistently re-
corded during data transfer between virtual
machines using different configurations and
monitoring tools. The network latency (RTT)
varied from 1139 ps to 2541 s, which corre-

ul
(CLI,Config
files)

Cloud
configuration E

and testing E

API

Scenario
> management >

Cloud infrastructure
Resource provisioning]

Cloud %

resource [

abstraction

Result Data
generation [collection
JSON,CSV]

A

ll

Benchmark executor <

Figure 2 — Architecture diagram of tool

sponds to the standard values for the tested
conditions.

The picture (Figure 3) shows the configu-
ration in which the tests were performed, in-
cluding the type of virtual machines, the size
of the data transfer buffer, and the number of
packets sent.

The processor load parameters were also
thoroughly analyzed. The maximum CPU uti-
lization was up to 80%, indicating rational re-
source utilization under normal load.

The picture (Figure 4) shows data demon-
strating the CPU architecture, its configuration
and parameters of the hypervisor used for vir-
tual machine deployment. This data allows you
to evaluate the CPU efficiency when running
the given test scenarios.

To evaluate I/O operations, testing was
conducted using standard workloads. The re-
sults show that the peak IOPS performance
reached 15000 operations per second, which
confirms the high efficiency of the platform
when working with large data volumes.

The picture (Figure 5) shows the config-
urations used to perform I/O tests, including
virtual disk settings and storage subsystem
settings.

2024-11-16 21:13

iperf iperf@® SUCCEEDED

Success rate: 100.00% (1/1)

37,845 77078c55 MainThread INFO

Paspen «ABTOMaTuKa. DJHepreTuka. IKT» B

The total test execution time was 412 sec-
onds, which demonstrates the high efficiency
of the automated deployment and testing tool.
This confirms that the platform is capable of
executing complex test scenarios in a short
time while minimizing the impact on resourc-
es. Summary of results:

- Network Throughput: Achieved
Mbps with minimal packet loss.

- Network Latency: Values ranged from
1139us to 2541ps.

- CPU utilization: Averaged 80%, confirm-
ing stable CPU performance.

- IOPS: The maximum performance reached
15000 operations per second.

- Total test execution time: The average
time was 412 seconds.

The results of our survey confirm the high
performance of cloud platforms and emphasize
the importance of resource management to
improve their efficiency. The network through-
put achieved in the tests (1017 Mbps) and the
network latency (1139-2541 ps) confirm the
data presented by Megahed et al [1], who note
that optimizing network parameters is critical
for applications with high response time re-
quirements.

1017

Benchmark run statuses:

Figure 3 — Benchmark run statuses

1017.000000 Mbits/sec
eceiving machine type="

sending_machine

="None" write pqckpt count="58167")
-000000 Hbltsx;ec
" netpwr="50017 "t2.micro"
runtime_in_seconds

rice="None" write_packet count="58189")
0.000000

64" BogoMIPS="4599.99" Byte Ord
pse tsc msr pae mce cx8 apic se r pge mca cmov pat ps
puid tsc_known freq pni pclmulqdq ssse3 fma k%lﬁ pcid
lm abm pti fsgsbase bmil avx2 smep bmi
" L2 cache="256 KiB (1 instance)" L3
UMA node® CPU(s)="0" On-line CPU(s)
lmerability Gather data sampling="Not
version” Vulnerability Md
ulnerability Mmio \talﬂ dat
t affected" Vulner
erability Spectre

ulnerable: Clear CPU buffers attempted, no

ﬂltlgatlun u:elLopy, apgs barriers and

P
lock duration mlnutns "None" vm_2 spot one")

lscpu

ittle Endian" CPU family="6" CPU op-mode(
6 clflush mmx fx
ic movbe popcnt tsc deadl
rendor="Xen" L1d ca
" Model name="Intel(R

Si
fected" Vulnerability Itlb multihit="
nerable: Clear CPU buffers attempted. no microco

micro
ity Retbleed="Not affected" Vulnerability Spec rstack overf
user pointer s
BHI Retpoline" Vulnerability Sr
vm_1 spot_block duration minute

receiving zone="us-
"t2.micro" sending thread count=
1 minutes="None" vm 1 spot price="None" vm 2 boot disk

E b" tcp window
vm_2 spot block dura

(Address sizes="46 bits physical, 48 bits virtual" Architecture="x86
bit, 64-bit" CPU(s)="1" Core(s) per socket="1" Flags="fpu vme de
e2 ht syscall nx rdtscp lm constant_tsc rep_good nopl \tupaluqy c

timer aes xsave avx flbc rdland h‘{p(f\fl: ahf

KiB (1 instance)"

Xeon(R) CPU E5-2686 v4 @ 2

s) per core="1" Vendor ID="GenuineIntel" Vlrtualx atlnn t

M: Mitigation: VMX unsupported" Vulnerability L1

MT Host state unknown" Vulnerability Meltdo

MT Host state unkn Vulnerability Reg flle

t affected" Vu] t

node n
spot_b

<Add195” sizes="46 bits physical, Ju bits virtual" ArChle(TUIE— x86

Flgure 4 - Conflguratlon of processor and hypervisor settings

497

498 I3

B Tpyabl yHuBepcuteTta Ne1 (98) - 2025

spot block durat

) 2 boot _disk s ot _block duration

m_1 spot block durat

buntu8.3

t_disk ation

id (Ubuntu
one

Figure 5 — Input/Output Operations (IOPS) Test Results

Conclusion. The results of this article con-
firm that cloud platforms effectively optimize
resource utilization and improve application
performance. By analyzing key metrics such as
network bandwidth, CPU utilization, input/out-
put operations (IOPS), and network latency,
a comprehensive evaluation of cloud system
performance under different workloads was
conducted. The findings support the hypothe-
sis that integrated resource management ap-
proaches significantly improve quality of ser-
vice and reduce operational costs.

The novelty of this work lies in the empha-
sis on hands-on testing of real-world cloud
environments, which revealed critical depen-
dencies between resource configuration and
application performance. The study comple-
ments existing work by highlighting the re-
lationship between CPU efficiency, network
parameters and IOPS, and proposes new ap-
proaches to optimize cloud platforms for re-
source-intensive tasks.

However, the survey has its limitations due

REFERENCES

to the use of specific virtual machine config-
urations and testing tools. In the future, the
study should be expanded to include a wider
range of workload scenarios, different cloud
providers, and real-time dynamic scaling test-
ing to validate the findings.

The practical significance of the article is
that the results of the survey can be used to
select optimal configurations when working
with resource-intensive applications. The pro-
posed recommendations will be useful for en-
gineers and administrators of cloud systems
in such areas as finance, healthcare and the
Internet of Things, where efficient resource
management is critical.

Going forward, it is worth considering ad-
vanced optimization techniques such as ma-
chine learning and container architectures to
improve and extend cloud performance strate-
gies. This study makes an important contribu-
tion to cloud platform resource management
and provides a foundation for future innova-
tions in this area.

1. Thomas E., Zaigham M., Ricardo P. (2019). «Cloud Computing: Concepts, Technology & Architecture». 47

(9), 1275-1296.

2. Michael S.C. (2020). «Microsoft Azure Essentials: Fundamentals of Azure». Microsoft Press.
3. DanS. (2020). «Google Cloud Platform in Action». Manning Publications, 24 (3), 725-736.
4. Justin G. (2021). «Cloud Native Infrastructure: Patterns for Scalable and High-Performance Computing».

O'Reilly Media, 59 (3), 1005-1031.

5. Thomas A. Limoncelli, Christina J. Hogan, Strata R. Chalup (2022). «The Practice of Cloud System Admin-
istration: Design, Deploy, Manage, and Secure Cloud Infrastructure». O'Reilly Media, 10 (3), 1103.

Joe B (2023). «Building Applications with Kubernetes: A Guide to Deploying and Managing Containerized

Paspen «ABTOMaTuKa. DJHepreTuka. IKT» B

Applications». O'Reilly Media, 17 (8), 5749-5758.

7. James M. (2021). «Serverless Computing: Architecting and Developing Applications for the Cloud».
O'Reilly Media, 118 (1), 819-852.

8. Judith H., Barbara J.H., Dan K. (2024). «Cloud Computing for Dummies». Wiley, 39 (2), 101243.

9. Khalid Ibrahim Khalaf Jajan, Subhi R. M. Zeebaree (2024). «Optimizing Performance in Distributed Cloud
Architectures: A Review of Optimization Techniques and Tools». ISSN 2549-7286.

10. Aly M., Ahmed N., Peifeng Y., Samir T., Hamid Reza Motahari N., Taiga N. (2019). «Optimizing cloud
solutioning design». https://doi.org/10.1016/j.future.2018.08.005

11. Michele C., Giovanni Paolo G., Danilo A., Elisabetta Di N., Marco L., Marcos A. (2022). «Architectural

Design of Cloud Applications: A Performance-Aware Cost Minimization Approach». IEEE Transactions on
Cloud Computing 1571-1591.

B Tpyabl yHuBepcuTeTa No1 (98) - 2025

10.

11.

Thomas E., Zaigham M., Ricardo P. (2019). «Cloud Computing: Concepts, Technology & Architecture». 47
(9), 1275-1296.

Michael S.C. (2020). «Microsoft Azure Essentials: Fundamentals of Azure». Microsoft Press.

Dan S. (2020). «Google Cloud Platform in Action». Manning Publications, 24 (3), 725-736.

Justin G. (2021). «Cloud Native Infrastructure: Patterns for Scalable and High-Performance Computing».
O'Reilly Media, 59 (3), 1005-1031.

Thomas A. Limoncelli, Christina J. Hogan, Strata R. Chalup (2022). «The Practice of Cloud System Admin-
istration: Design, Deploy, Manage, and Secure Cloud Infrastructure». O'Reilly Media, 10 (3), 1103.

Joe B (2023). «Building Applications with Kubernetes: A Guide to Deploying and Managing Containerized
Applications». O'Reilly Media, 17 (8), 5749-5758.

James M. (2021). «Serverless Computing: Architecting and Developing Applications for the Cloud».
O'Reilly Media, 118 (1), 819-852.

Judith H., Barbara J.H., Dan K. (2024). «Cloud Computing for Dummies». Wiley, 39 (2), 101243.

Khalid Ibrahim Khalaf Jajan, Subhi R. M. Zeebaree (2024). «Optimizing Performance in Distributed Cloud
Architectures: A Review of Optimization Techniques and Tools». ISSN 2549-7286.

Aly M., Ahmed N., Peifeng Y., Samir T., Hamid Reza Motahari N., Taiga N. (2019). «Optimizing cloud
solutioning design». https://doi.org/10.1016/j.future.2018.08.005

Michele C., Giovanni Paolo G., Danilo A., Elisabetta Di N., Marco L., Marcos A. (2022). «Architectural
Design of Cloud Applications: A Performance-Aware Cost Minimization Approach». IEEE Transactions on
Cloud Computing 1571-1591.

