
483

Раздел «Автоматика. Энергетика. ИКТ»

DOI 10.52209/1609-1825_2025_1_483 UDC 004.924

Comparison of Graphics Application Public
Interfaces DirectX 12 and Vulkan

1DANENOVA Gulmira, Cand. of Tech. Sci., Associate Professor, guldan72@mail.ru,
1KOKKOZ Makhabbat, Cand. of Ped. Sci., Associate Professor, makhabbat_k@bk.ru,
1AKHMETZHANOV Talgat, Cand. of Tech. Sci., Associate Professor, akhmetzhanov_t@mail.ru,
1SAILAU KYZY Zhuldyz, PhD, Acting Associate Professor, s_k_zhuldiz@mail.ru,
1*ABILDAEVA Gulnur, Master's Degree, Senior Lecturer, g.abildaeva@kstu.kz,
1NPJSC «Abylkas Saginov Karaganda Technical University», N. Nazarbayev Avenue, 56,
Karaganda, Kazakhstan,
*corresponding author.

Abstract. This study is aimed at studying modern graphical APIs, studying their performance,
capabilities, as well as comparing them with previous generation graphical interfaces. The
purpose of the study is to study the performance of these interfaces when used under the
same conditions. It is necessary to find out which of the interfaces represents not only the
best performance, but also the most stable implementation. In the course of the article, the
main innovations that are characteristic of both new generation graphical interfaces were first
considered. First of all, these are changes in the field of asynchronous calculations, namely
changes in the pipeline. The most obvious use of these technologies is in game development,
but graphical interfaces are also widely used in science to visualize results. The performance
and stability results of both interfaces were obtained by comparing them with the previous
generation interface during the study.

Keywords: graphics API, DirectX 11, DirectX 12, Vulkan, Nvidia, architecture.

Introduction
In the modern world of computer graph-

ics, Graphics APIs (Application Programming
Interfaces) play a crucial role in software de-
velopment, ranging from gaming applications
to complex computer-aided design (CAD) sys-
tems. Each year, the demand for higher graph-
ics quality increases, requiring developers not
only to implement new technologies but also
to optimize performance to deliver high-qual-
ity graphics without the need for excessively
powerful systems.

The growing complexity of graphical tasks
and the diversity of hardware solutions pose
additional challenges for developers, making
the use of a standard API especially important.
A graphics API abstracts the specific features
of different graphics devices, allowing devel-
opers to work with a unified interface where
the responsibility for driver development lies
with hardware manufacturers. This simplifies
software development and enhances its per-
formance.

The aim of this study is to conduct a com-
parative analysis of the modern graphics APIs,
DirectX 12 and Vulkan. While the previous
generation API, DirectX 11, is still in use, the

newer, low-level interfaces of DirectX 12 and
Vulkan offer developers greater opportunities
for performance enhancement and graphics
optimization. This article examines the key
features of these APIs, their architectural dif-
ferences, and their impact on the performance
of graphical applications.

The objectives of the study include:
1. Conducting a comparative analysis of

the performance and stability of DirectX 12
and Vulkan.

2. Comparing the new APIs with the previ-
ous generation interface, DirectX 11, to identi-
fy their advantages and disadvantages.

3. Evaluating the modern graphics APIs Di-
rectX 12 and Vulkan efficiency based on pa-
rameters such as frame rate and GPU load.

Thus, this study aims to determine which of
the modern graphics APIs offers the best com-
bination of performance and efficiency, as well
as to provide a rationale for selecting an API
for graphics application development.

Literature review
With the above said, the review the perfor-

mance and stability of the two graphics API be-
tween themselves and the comparison of them
with graphics API of the previous generation

484

Труды университета №1 (98) • 2025

have been conducted. Firstly, we have con-
ducted the comparative analysis of the perfor-
mance and stability of DirectX 12 and Vulkan.

A graphics API is essential because it al-
lows developers to avoid dealing with the vast
number of variations in graphics hardware. In-
stead, they work with an interface that shifts
the responsibility for creating hardware drivers
to the graphics hardware manufacturers, en-
abling software developers to use a unified API
[1].

The first such interface was SGI's IRIS GL,
which allowed for both 2D and 3D graphics on
devices running the IRIX operating system,
developed in 1992. In 1994, this evolved into
OpenGL, with the primary distinction being
that OpenGL allowed for software implemen-
tations of features unavailable in hardware. In
1995, Microsoft developed DirectX, which be-
came OpenGL’s main competitor [2]. In 2006,
the rights to OpenGL were transferred to the
Khronos Group, which in 2014 began develop-
ing a modern, low-level graphics API intended
to compete with DirectX [3].

Today, DirectX 11 remains the most wide-
ly used graphics API from the previous gen-
eration, but more developers are now imple-
menting support for the newer DirectX 12 or
Vulkan, or even completely abandoning the
legacy interface. These new low-level APIs
are designed with performance optimization
in mind [4]. For many developers today, the
choice lies between DirectX 12 and Vulkan,
and the following outlines the key features of
these two modern graphics APIs.

One key feature of DirectX 12 and Vulkan
is fast «draw call» preparation. In 3D render-
ing, a draw call commands the creation of a
polygonal mesh, with more objects requiring
more draw calls. Shorter preparation times in
DirectX 12 reduce CPU load, minimize GPU idle
time, and allow more objects to be displayed
on screen, also improving load balancing in
multi-core systems.

DirectX 12 introduced the Pipeline State
Object (PSO) [2], which stores pipeline states
(input assembler, pixel shader, etc.) in a uni-
fied, immutable object. PSOs can be quickly
changed, enabling hardware and drivers to ef-
ficiently translate PSOs into hardware instruc-
tions, reducing overhead and improving draw
call performance.

In DirectX 11, there is a single instruction
queue for rendering, which can lead to ineffi-
ciencies. DirectX 12 and Vulkan, however, al-
low separate queues for graphics and compute
tasks, with the CPU and driver distributing GPU
resources between them, similar to CPU Hy-
per-Threading.

The asynchronous queue system in DirectX
12 and Vulkan is termed «Multi-Engine» [2,5].

While tasks in separate queues may have de-
pendencies, Multi-Engine supports concurrent
execution of computational instructions, mak-
ing it a more accurate description than «asyn-
chronous computing», which applies to a nar-
rower range of tasks.

AMD GPUs benefit from Multi-Engine, while
NVIDIA chips are less efficient with it due to
architectural limitations, with only the Pas-
cal architecture supporting Multi-Engine [5].
The easiest architecture to analyze is AMD's
Graphics Core Next (GCN), which underpins all
recent AMD GPUs. GCN's strengths and weak-
nesses make it particularly suited for Multi-En-
gine. Designed to handle both GP-GPU com-
puting and graphics rendering, GCN is built to
offload much of the task of saturating the GPU
with parallelism to the hardware, rather than
relying on the driver or application. Even early
GCN chips support simultaneous execution of
multiple compute queues alongside a graph-
ics rendering queue, thanks to two types of
command processors: the Graphics Command
Processor and the Advanced Compute Engine.

Since the third generation of GCN (Tonga
and Fiji chips), the architecture also includes
separate schedulers for shader and compute
instructions, allowing the processor to dynam-
ically allocate computing resources between
different instruction queues. GCN facilitates
relatively smooth context switching between
compute units, where a unit waiting for data
from a long-running operation can take on new
tasks from the command processor, saving its
register contents in external storage. This ex-
ternal storage is a high-speed integrated cache
in GCN, enabling efficient context switching.
GCN's control logic is also capable of optimiz-
ing GPU utilization by using instructions from
separate queues, filling small pipeline gaps ef-
ficiently.

The situation with Multi-Engine support in
NVIDIA GPUs is far from being as transparent
as in the case of AMD. NVIDIA materials, which
are in the public domain, do not give a clear
answer to all questions. Kepler, Maxwell and
Pascal GPU architectures are generally allowed
to deal with a mixed load under the control of
DirectX 12 and Vulkan. Reason to this is based
largely on third-party sources and does not
claim to be the ultimate truth.

Unlike AMD, NVIDIA has chosen to split its
GPUs into primarily consumer or profession-
al models, starting with the Kepler architec-
ture. The first ones are initially deprived of a
lot of computational functions that are useless
in game tasks, such as fast execution of dou-
ble precision calculations. In addition, on the
way from the Fermi architecture to Kepler, and
then Maxwell, the developers consistently re-
duced the GPU control logic, shifting some of

485

Раздел «Автоматика. Энергетика. ИКТ»

the functions to the driver.
Mixed load support even in mainstream

NVIDIA chips has expanded significantly since
Kepler. Small chips of the Kepler architecture
are able to work with a single command queue,
whether it's graphics or a purely computation-
al task. In the big Kepler and first-generation
Maxwell chips, a separate block was introduced
to receive computing Hyper-Q queues, but a
separate computing load simultaneously with
graphics is only possible under the proprietary
CUDA API. In addition, the computing queue
can use one and only one of the 32 slots of the
CUDA Work Distributor block, which distrib-
utes chains of operations between individual
streaming multiprocessors [6].

Dynamic power distribution between the
graphics and computing queues appeared only
in Maxwell of the second generation, but there
is a critical limitation: redistribution occurs
only at the draw call boundary, which means
that the driver needs to allocate the streaming
multiprocessor group necessary for a particu-
lar task in advance. This gives rise to sched-
uling errors that cannot be eliminated on the
fly. In addition, Maxwell suffers heavy losses
from a context change, as intermediate re-
sults of calculations are stored in RAM, while
the L1 cache and shared memory of the GPU
are completely cleared. Under such conditions,
the rather short idle time of individual SMs is
not as much detrimental to performance as a
context change.

Secondly, we have compared the features
of DirectX 12 and Vulkan with graphics API of
the previous generation.

DirectX 12 got many new rendering fea-
tures with updates levels 12_0 and 12_1. But
unlike previous versions of DirectX, version 12
is not meant to bring the world something nev-
er seen before, as was the case with shaders
in DirectX 8 and polygon tessellation in DirectX
11. Some features of feature levels 12_0 and
12_1 improve the quality of certain effects,
while others are used in advanced rendering
algorithms. And yet, most of the points of fea-
ture levels 12_0 and 12_1 serve to make the
GPU perform faster a number of already known
tasks, which otherwise create a large load on
the bandwidth of texture mapping units, the
memory bus [2].

The additional processing power unlocked
by the new API versions allows for richer game
graphics with more detailed textures and ob-
jects. In some games like Ashes of the Singu-
larity, the choice of API is crucial due to the
large number of draw calls required for many
units on screen. However, the adoption of new
APIs is still limited, and the diversity of user
hardware prevents developers from making
DirectX 12 and Vulkan-exclusive content wide-

ly available.
Modern GPUs are no longer just «graph-

ics processors». Their architecture, featuring
many execution units like ALUs or CUDA cores,
is capable of handling various tasks suited for
GP-GPU, including industrial work, cryptocur-
rency mining, and machine learning [7].

GP-GPU techniques have been applied in
games, with NVIDIA adapting the PhysX API
for GPUs after acquiring Ageia. However, no
commercial game has fully showcased the
potential of non-graphical computations like
NVIDIA’s PhysX demos. This is because even
the best GPUs lack sufficient resources for
large-scale physics calculations without affect-
ing frame rates, especially with new priorities
like ultra-high-definition resolution and VR.

General-purpose computing in games isn't
limited to physics; techniques like screen
space ambient occlusion, reflections, shad-
ow mapping, and global illumination can also
be implemented using GP-GPU methods. The
boundary between graphics and computation
exists only in the application and API architec-
ture, where tasks are processed in separate
instruction queues, a concept known as asyn-
chronous computing.

The API layer controlling the GPU has be-
come leaner compared to DirectX 11, where
tasks like memory management and queue
synchronization were handled automatically.
While this allows for performance optimization,
it requires programmers to account for various
GPU architectures to avoid performance issues
[2].

Since Microsoft's 2018 introduction of ray
tracing, only DirectX 12 initially supported the
technology through DXR. In December 2020,
Vulkan added ray tracing support as well [8].
Khronos, with NVIDIA's help, facilitated the
transition of ray tracing to Vulkan. Vulkan
supports GLSL and HLSL, while DXR supports
only HLSL [9]. Additionally, Vulkan’s Deferred
Host Operations allow acceleration structures
to be created across multiple processor cores,
key for Bounding Volume Hierarchy (BVH), a
method used in both ray tracing and collision
calculations to simplify complex object compu-
tations.

In addition to being used in video games,
graphics APIs also play an important role in re-
search to visualize results [10]. The reason for
using a low-level interface is to have full con-
trol over the rendering process and the pos-
sibility of increasing performance. To unleash
the full potential of Vulkan, the Datoviz library
was created, which allows you to achieve the
highest available performance [11,12]. One of
the reasons why scientific developers prefer
Vulkan is its multi-platform. While DirectX 12
is a step up from DirectX 11, with support not

486

Труды университета №1 (98) • 2025

only on Windows 10 and Windows 11, but also
on Xbox Series X and Linux, Vulkan is available
on Windows XP, Windows 7, Windows 10, Win-
dows 11, SteamOS, Android, Red Hat Linux
Enterprise, Tizen, Ubuntu [5]. For example,
with the help of Vulkan, a PolyBench port was
created for mobile platforms [13]. PolyBench
is a collection of benchmarks containing static
control parts. The purpose is to uniformize the
execution and monitoring of kernels, typically
used in past and current publications.

Methodology
Thirdly, we have evaluated the modern

graphics APIs DirectX 12 and Vulkan efficiency
based on parameters such as frame rate and
GPU load.

We have used two parameters to do this.
First parameter is frame rate. The more frames
per second the graphics card can render, the
better. The second parameter is the loading of
the GPU. The more graphics card resources the
graphics API can use, the better. Stability will
be best compared by looking at how far the
maximum and minimum frame rates will differ
from the average.

A rather small number of games support
both DirectX 12 and Vulkan, since these graph-
ics APIs are more similar to each other than
between their predecessors (OpenGL for Vul-
kan and DirectX 11 for DirectX 12), since both
interfaces are low-level, and also support ray
tracing technology.

To compare graphics API performance, we
will be using an Nvidia RTX 2060 Super based
gaming PC. Table 1 shows the characteristics
of the gaming PC:

- Processor: Intel Core i7 9700k;
- Video Card: ASUS RTX 2060 Super Strix

Gaming;
- Motherboard: ASUS TUF Z390-Plus Gam-

ing;
- RAM: DDR-4 16 Gb Kingston HyperX, 2x8

Gb, 2666 MHz;
- SSD: KINGSTON 240Gb;
- Operating System: Windows 10 Ultimate.
Since DirectX 12 and Vulkan are very sim-

ilar, there are very few games that have sup-
port and good optimization of both graphical
interfaces. Ashes of Singularity, Red Dead Re-
demption 2, Serious Sam 4 will be used as ex-
amples of comparing DirectX 12 and Vulkan.
For comparison DirectX 11 and Vulkan will be
used: Rainbow Six Siege 6, Dota 2.

For comparison DirectX 11 and DirectX
12 will be used: Battlefield V, Civilization VI.
Games are the best way to compare graphics
API, because the graphics in games use the
maximum range of technologies that interfac-
es offer us. For example shaders or ray tracing.

The study will measure the frame rate, and
the workload of the GPU. In most cases, these

games already have built-in benchmarks that
can be used, but for games such as Dota 2 and
Battlefield V, scripts have been prepared that
would help reproduce the same sequence of
actions to compare the performance of inter-
faces. Measurements were taken 10 times for
each game and interface, and the best indica-
tors were selected in the results.

Research results
In our case, the research results display the

minimum, average and maximum frame rates
that were achieved during the test run, as well
as the workload of the GPU. GPU load is an
important indicator, since with V-sync turned
off, we will be able to observe how much the
graphics API can use the resources of the video
card. V-sync limits the maximum frame rate to
the monitor's frequency, thus preventing the
video card from running empty and keeping
its power.

Table 1 shows the results of Ashes of Sin-
gularity runs at maximum graphics settings
and 1440p resolution. The built-in benchmark
was used for runs.

Table 2 shows the results of Red dead re-
demption 2 runs with maximum graphics set-
tings and a resolution of 1440p. The built-in
benchmark was used for the runs. The game
does not support DirectX 11.

Table 3 shows the results of Serious Sam 4
runs at maximum graphics settings and 1440p
resolution. The built-in benchmark was used
for runs.

Table 4 shows the results of Rainbow Six
Siege runs at maximum graphics settings and
1440p resolution. The built-in benchmark was
used for runs. The game does not support Di-
rectX 12.

Table 5 shows the results of Dota 2 runs
with maximum graphics settings and 1440p
resolution. For runs a prepared replay of the
game was used. The game does not support
DirectX 12.

Table 6 shows the results of Battlefield V
runs at maximum graphics settings and 1440p
resolution. For runs, a script was used that re-
produced the same sequence of actions in a
single player campaign. This was necessary to
create the most approximate conditions for the
correct comparison of graphics APIs. The game
does not support Vulkan.

Table 7 shows the results of measurements
of Civilization 6 with maximum graphics set-
tings and a resolution of 1440p. The built-in
benchmark was used for runs. The game does
not support Vulkan.

Results and discussion
On Figures 1, 2 we can see visualized re-

sults of research. Figure 1 represents the com-
parison of average frame rate for all games and
all used graphics API. There we can see that in

487

Раздел «Автоматика. Энергетика. ИКТ»

most cases API of new generation perform bet-
ter, than DirectX 11. Figure 2 represents differ-
ence between minimum and maximum frame

rates. There we can see that in most cases Vul-
kan offers more consistent performance, while
DirectX 12 works with predictions, heavy frame

Table 1 – The results of Ashes of Singularity runs

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 11 19 62 25.7 42.3
DirectX 12 41 69 54.1 97.2

Vulkan 37 72 53.6 92.5

Table 2 – The results of Red dead redemption 2 runs

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 12 10 97 56.5 96.8

Vulkan 26 81 58.2 97.1

Table 3 – The results of Serious Sam 4 runs

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 11 41 81 52.1 97.8
DirectX 12 37 77 56.8 98.1

Vulkan 69 101 73.4 83.9

Table 5 – The results of Dota 2 runs

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 11 158 213 190.8 84.7

Vulkan 165 223 193.4 96.3

Table 6 – The results of Battlefield V runs

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 11 101 142 113.1 64.8
DirectX 12 25 201 145.5 97.9

Table 4 – The results of Rainbow Six Siege runs

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 11 44 207 55.8 96.8

Vulkan 25 168 57.3 97.1

488

Труды университета №1 (98) • 2025

drops often occur, sometimes even worse than
DirectX 11. For Figure 1 the higher the value
is the better. For Figure 2 the lower the value
is the better.

Looking at the research results, we can
see that in the vast majority of examples,
next-generation graphics APIs produce higher
frame rates (10 to 50 percent gains) and also
make better use of the graphics card's power.
For example, in Ashes of the Singularity, the
next-generation APIs use almost all of the pro-

cessing power, when DirectX 11 could only use
about 60 percent on average [14]. This is due
to the ability of modern APIs to distribute the
load evenly across processor cores, and now
software developers have more access direct-
ly to the hardware. The latter, of course, can
create many problems for small studios, since
it will be difficult for them to take into account
all the variety of possible architectures, but for
this there are ready-made game engines that
take care of this for developers.

Table 7 – The results of measurements of Civilization 6

Graphics API Minimum frame rate, fps Maximum frame rate, fps Average framerate, fps GPU load, %
DirectX 11 24 61 47.3 95.3
DirectX 12 42 82 59.8 98.8

Figure 1 – Average frame rates of graphics API

489

Раздел «Автоматика. Энергетика. ИКТ»

In the case of Dota 2 and Rainbow Six
Siege, we can only see a small framerate in-
crease on Vulkan compared to DirectX 11, but
we can see a significant framerate stabilization
on Vulkan for Rainbow Six Siege, and for Dota
2 we can see a uniform improvement in all
frame rate measurements. This behavior can
be explained by insufficient optimization of the
new graphics API.

If we look at the comparison of the two
new graphics APIs, in the case of Red Dead
Redemption 2 and Serious Sam 4, Vulkan per-
forms significantly better. In Red Dead Re-
demption 2, we can see not only higher aver-
age frame rates, but also more stable frame
rates. While Vulkan's frame rate sags relative
to the average is only up to 50%, DirectX 12's
frame rate sags up to 18% relative to the av-
erage. For Serious Sam 4, a similar trend can
be observed. But this picture looks more like

poor optimization of DirectX 12, since the per-
formance is not much better than the previous
version. For Ashes of the Singularity, we can
see that DirectX 12 performs slightly better
than Vulkan, although the difference is not too
big.

Looking at the results of Dota 2 and Rain-
bow Six Siege, we can see that in these games
Vulkan performs only 1-2% better, while fully
loading the GPU. The result is far from in favor
of Vulkan, but this can be justified by the use
of its earlier versions, as well as insufficient
optimization by the developers.

DirectX 12 compared to DirectX 11 in Bat-
tlefield V and Civilization 6 performs signifi-
cantly better, by 20%, however, in the case of
Battlefield V, you can observe a significant drop
in frame rate at times when a huge number of
particles are rendered, and this drop was no-
ticed stably during time of all test situations.

Figure 2 – Difference between minimum and maximum frame rate

490

Труды университета №1 (98) • 2025

Conclusion
All the objectives of the study were suc-

cessfully achieved. The comparative analysis
demonstrated that modern graphics APIs, Di-
rectX 12 and Vulkan, provide significant advan-
tages for developers in terms of performance
and flexibility compared to DirectX 11. Key
architectural features were examined, such as
the Pipeline State Object (PSO) in DirectX 12
and the Multi-Engine capabilities in both APIs,
allowing for more efficient load balancing be-
tween the CPU and GPU.

Based on the comparative analysis, the fol-
lowing conclusions can be drawn.

1. In terms of performance, Vulkan per-
forms on average 2-3 percent worse than Di-
rectX 12, but instead produces more stable
frame rates, which is often a more important
factor.

DirectX 12 often suffers severe fps drops,
when Vulkan, offering slightly lower perfor-
mance, provides much better stability. If we
compare those options when only one modern
graphical interface was available and DirectX
11, then DirectX 12 was significantly more
successful than Vulkan, with way better per-
formance and stability.

2. Some results showed that DirectX 11
was just as good or slightly better than the
next generation of graphics API. One of the
reasons why DirectX 11 wasn't much worse in
some runs is the lack of experience with the
new graphics API, as well as the increased re-
sponsibility of developers for many things that
the interface previously did for them automat-

ically. Ashes of Singularity is a good example
of the progress of new graphics API. Here we
see a significant increase in performance and
stability. This is a good sign, because the more
experience developers have with new genera-
tion of graphics API, the more significant per-
formance gains we can see.

3. When it comes to ray tracing features,
Vulkan is in the lead due to its great features,
but DRX (DirectX ray tracing) is gradually add-
ing more and more new features. For scientific
research, preference also remains for Vulkan,
primarily for its cross-platform. And this is a
huge advantage for new gaming platforms,
which do not belong to Microsoft. For example
we can use Google Stadia. The presence of Vul-
kan support allows developers to release their
games on a wider range of platforms, which
is an undeniable advantage. Summing up, we
can say that in general, Vulkan is a more pre-
ferred graphics API than its competitor.

4. In this study, the authors conducted
an in-depth analysis of the performance and
stability of DirectX 12 and Vulkan, evaluated
GPU resource utilization efficiency, and provid-
ed recommendations for selecting a graphics
API for various types of applications. The au-
thors also analyzed the architectural features
of AMD and NVIDIA GPUs, proposing optimi-
zation methods for graphics applications based
on the type of GPU. The article presents the
authors' practical results and research, sup-
ported by experimental data and comparative
performance analysis.

REFERENCES

1. M. Nwadiugwu. The roles of graphics API, graphic hardware, and the graphics pipeline, ResearchGate
[Online], 2015. Available: https://www.researchgate.net/publication/283052466_

2. Microsoft. (2021, Dec. 30). DirectX 12 programming guide [Online]. Available: https://docs.microsoft.
com/en-us/windows/win32/direct3d12/directx-12-programming-guide

3. M. Bailey. Introduction to the vulkan graphics API, in SA '18: SIGGRAPH Asia 2018, Tokio, Japan, 2018,
pp. 1-225.

4. Microsoft. (2014, aug. 12). Developer Blog. DirectX 12 – High Performance and High Power Savings
[Online]. Available: https://devblogs.microsoft.com/directx/directx-12-high-performance-and-high-
power-savings/

5. J. Leech, T. Hector (2023) Vulkan® Documentation and Extensions: Procedures and Conventions [Online].
Available: https://www.khronos.org/registry/vulkan/specs/1.3/styleguide.html

6. T. Amert, N. Otterness, M. Yang, J.H. Anderson, F.D. Smith. GPU Scheduling on the NVIDIA TX2: Hidden
Details Revealed, in 2017 IEEE Real-Time Systems Symposium (RTSS), Paris, France, 2017, pp. 104-115.

7. J. Ghorpade. GPGPU Processing in CUDA Architecture, Advanced Computing: An International Journal,
vol. 3 (1), pp. 105-120, Feb 2012.

491

Раздел «Автоматика. Энергетика. ИКТ»

DirectX 12 және Vulkan графикалық қосымшаларының жалпы интерфейстерін
салыстыру

1ДАНЕНОВА Гульмира Тулендиевна, т.ғ.к., доцент, guldan72@mail.ru,
1КӨККӨЗ Махаббат Мейрамқызы, п.ғ.к., доцент, makhabbat_k@bk.ru,
1АХМЕТЖАНОВ Талгат Бураевич, т.ғ.к., доцент, akhmetzhanov_t@mail.ru,
1САЙЛАУ ҚЫЗЫ Жұлдыз, PhD, доцент м.а., s_k_zhuldiz@mail.ru,
1*АБИЛДАЕВА Гулнур Балтабаевна, магистр, аға оқытушы, g.abildaeva@kstu.kz,
1«Әбілқас Сағынов атындағы Қарағанды техникалық университеті» КеАҚ, Н. Назарбаев
даңғылы, 56, Қарағанды, Қазақстан,
*автор-корреспондент.

Аңдатпа. Бұл зерттеу қазіргі заманғы API графикалық интерфейстерін, олардың өнім-
ділігін, мүмкіндіктерін зерттеуге, сондай-ақ оларды алдыңғы буын графикалық интер-
фейстерімен салыстыруға бағытталған. Зерттеудің мақсаты – бірдей жағдайларда пайда-
ланылған кезде осы интерфейстердің өнімділігін зерттеу. Интерфейстердің қайсысы ең
жақсы өнімділікті ғана емес, сонымен қатар ең тұрақты іске асыруды қамтамасыз ететінін
анықтау қажет. Жұмыс барысында алғаш рет жаңа буынның екі графикалық интерфей-
сіне де тән негізгі инновациялар қарастырылды. Ең алдымен, бұл асинхронды есептеу
саласындағы өзгерістер, атап айтқанда құбырдағы өзгерістер. Бұл технологиялардың ең
айқын қолданылуы ойын дамытуда, бірақ графикалық интерфейстер нәтижелерді визуа-
лизациялау үшін ғылымда кеңінен қолданылады. Екі интерфейстің өнімділігі мен тұрақты-
лығының нәтижелері оларды зерттеу барысында алдыңғы буын интерфейсімен салыстыру
арқылы алынды.

Кілт сөздер: графикалық API, DirectX 11, DirectX 12, Vulkan, Nvidia.

Сравнение общедоступных интерфейсов графических приложений DirectX 12
и Vulkan

1ДАНЕНОВА Гульмира Тулендиевна, к.т.н., доцент, guldan72@mail.ru,
1КОККОЗ Махаббат Мейрамовна, к.п.н., доцент, makhabbat_k@bk.ru,
1АХМЕТЖАНОВ Талгат Бураевич, к.т.н., доцент, akhmetzhanov_t@mail.ru,
1САЙЛАУ ҚЫЗЫ Жұлдыз, PhD, и.о. доцента, s_k_zhuldiz@mail.ru,
1*АБИЛДАЕВА Гулнур Балтабаевна, магистр, старший преподаватель,
g.abildaeva@kstu.kz,
1НАО «Карагандинский технический университет имени Абылкаса Сагинова»,
пр. Н. Назарбаева, 56, Караганда, Казахстан,
*автор-корреспондент.

Аннотация. Данное исследование направлено на изучение современных графических
интерфейсов API, изучение их производительности, возможностей, а также сравнение их
с графическими интерфейсами предыдущего поколения. Цель исследования – изучить

8. M. Rusch, N. Bickford, N. Subtil. Introduction to Vulkan Ray Tracing, in Ray Tracing Gems II, Berkeley:
Apress, 2021, pp. 213-255.

9. C. Wyman, A. Marrs. Introduction to DirectX raytracing, in Ray Tracing Gems, Berkeley:Apress, 2019,
pp. 21-47.

10. C. Ioannidis, A. Boutsi. Multithread rendering for cross-platform 3D visualization based on Vulkan API, in
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference 2020, vol. XLIV-4/W1-2020, London,
UK, 2020, pp. 57-62.

11. P. Ramachandran, G. Varoquaux. Mayavi: 3D visualization of scientific data, Computing in Science &
Engineering, vol. 13 (2), pp. 40-51, Oct 2010.

492

Труды университета №1 (98) • 2025

REFERENCES

1. M. Nwadiugwu. The roles of graphics API, graphic hardware, and the graphics pipeline, ResearchGate
[Online], 2015. Available: https://www.researchgate.net/publication/283052466_

2. Microsoft. (2021, Dec. 30). DirectX 12 programming guide [Online]. Available: https://docs.microsoft.
com/en-us/windows/win32/direct3d12/directx-12-programming-guide

3. M. Bailey. Introduction to the vulkan graphics API, in SA '18: SIGGRAPH Asia 2018, Tokio, Japan, 2018,
pp. 1-225.

4. Microsoft. (2014, aug. 12). Developer Blog. DirectX 12 – High Performance and High Power Savings
[Online]. Available: https://devblogs.microsoft.com/directx/directx-12-high-performance-and-high-
power-savings/

5. J. Leech, T. Hector (2023) Vulkan® Documentation and Extensions: Procedures and Conventions [Online].
Available: https://www.khronos.org/registry/vulkan/specs/1.3/styleguide.html

6. T. Amert, N. Otterness, M. Yang, J.H. Anderson, F.D. Smith. GPU Scheduling on the NVIDIA TX2: Hidden
Details Revealed, in 2017 IEEE Real-Time Systems Symposium (RTSS), Paris, France, 2017, pp. 104-115.

7. J. Ghorpade. GPGPU Processing in CUDA Architecture, Advanced Computing: An International Journal,
vol. 3 (1), pp. 105-120, Feb 2012.

8. M. Rusch, N. Bickford, N. Subtil. Introduction to Vulkan Ray Tracing, in Ray Tracing Gems II, Berkeley:
Apress, 2021, pp. 213-255.

9. C. Wyman, A. Marrs. Introduction to DirectX raytracing, in Ray Tracing Gems, Berkeley:Apress, 2019,
pp. 21-47.

10. C. Ioannidis, A. Boutsi. Multithread rendering for cross-platform 3D visualization based on Vulkan API, in
3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference 2020, vol. XLIV-4/W1-2020, London,
UK, 2020, pp. 57-62.

11. P. Ramachandran, G. Varoquaux. Mayavi: 3D visualization of scientific data, Computing in Science &
Engineering, vol. 13 (2), pp. 40-51, Oct 2010.

производительность этих интерфейсов при использовании в одинаковых условиях. Необ-
ходимо выяснить, какой из интерфейсов обеспечивает не только наилучшую производи-
тельность, но и наиболее стабильную реализацию. В ходе работы впервые были рассмо-
трены основные нововведения, характерные для обоих графических интерфейсов нового
поколения. Прежде всего, это изменения в области асинхронных вычислений, а именно
изменения в конвейере. Наиболее очевидное применение этих технологий – в разработке
игр, но графические интерфейсы также широко используются в науке для визуализации
результатов. Результаты производительности и стабильности обоих интерфейсов были
получены путем сравнения их с интерфейсом предыдущего поколения в ходе исследова-
ния.

Ключевые слова: графический интерфейсы API, DirectX 11, DirectX 12, Vulkan, Nvidia.

