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Abstract. From the proposed model of the thickness of the surface layer of the coal seam in the Sherubaynura section
of the Karaganda basin, it follows that this thickness does not exceed 150 nm. For nanostructures of such sizes, there
are size dependences of all the physical properties, including the diffusion coefficient of methane through microcracks
in the coal seam. This means that for the methane diffusion in the Fick's equation, one must assume that the diffusion
coefficient will also depend on the seam size. The solution of this problem shows that the diffusion of nanometer-thick
coal-seam methane significantly differs from that of a massive sample. It is also significant that the methane diffusion
in the coal seam depends both on the grade of coal through the diffusion coefficient of a massive sample and on the
size factor. In the classical case, there is no such dependence. This affects the mechanism of the methane diffusion
through coal, taking into account the structural features of their surface properties during metamorphism of coal

seams, especially with changing their depth.
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Introduction

Today, occupational safety in coal mines receives
the most attention because of the increasing depth of
mining and because of the high methane content of
coal seams [1]. However, the passions regarding the
origin of coal, as well as methane, have not ceased to
this day [2]. This is due to the fact that the processes
of carbonification and methane formation in coal
took place hundred million years ago. In addition,
the nanostructure of coal has just begun to develop,
although we are already talking about its impact on
sudden emissions of coal and methane [3].

In this work we will talk about the nanostructure
of coal seams in the Sherubaynura section of the
Karaganda basin and consider how this structure is
affected by the process of methane diffusion.

The nature of coal and coal mine methane

The modern theory of the molecular structure
of the organic mass of coal with the use of quantum
chemistry, thermodynamics and physical kinetics is
presented in the work [3]. Today, coal is represented
as a polymer, which has stability and consists of some
skeleton (core), which is surrounded by a set of lateral
aromatic links, which are connected with the core by
Van der Waals force [3].

Recently there was work [2], where the authors

EILY tested the hypothesis of methane formation from

coal, using the methods of biogeochemistry and
isotopic methods. In doing so, they relied on the fact
that methane in the coal seam is formed by methoxyl
groups, which were originally part of the plants from
which coal matter is formed. It is shown in the work
[4], that methane is produced by microorganisms
from more than 30 types of methoxylated aromatic
compounds contained in coals. These microorganisms
decompose primarily high-molecular-weight organic
substances and produce hydrogen, acetic acid,
methanol, etc., and then, using these substances,
produce methane (Figure 1).

Studies of works [2, 4] show that demethylation
occurs during the conversion of lignite to brown
coal stage. Since the process itself is biogenic in
nature, ?C is extracted from the system and the coal
seam is enriched in "C isotope. It certainly follows
from this that the stage of anaerobic decomposition
of brown coals and the formation of methane is
accompanied by a reduction of the light isotope and
its transformation into the isotope "*C (Figure 2). This
explains the isotope shift during microbial formation
of methane.

Coal seams in the Sherubaynura section

The coal seams in the aforementioned area are
well described in work [5]. The characteristic of
the Sherubaynura syncline differs from all similar
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Figure 1 — General diagram of coal seam methane formation with participation of microorganisms: A — anaerobic
microbes in the pores of the coal; B — isolation of extracellular enzymes by microorganisms that catalyze the
process of demethylation; C — separation of methoxyl groups (methane precursors) from carbon rings [4]
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Figure 2 — General diagram of coal seam methane formation [2]

formations in more complex tectonic conditions.

In terms of geology, the Sherubaynura area
corresponds to the Palaeozoic and Cenozoic
deposits. In the Palaeozoic, hard coal is represented
by the following formations: Karaganda, Above-
Karaganda, and Ashlyarik. The coal grades are K
and OC. Methane of the coal zone is located at the

depth of 50 to 150 m. Then, with the depth methane
concentration increases and at the depth of 200-250 m
it is equal to 10-18 m*/t g.m.

Its further increase is slower and does not exceed
5-7 m® for every 100 m. After reaching a depth of 1000
m, the methane content becomes 22-29 m*/t g.m. The
Langmuir sorption capacity varies from 29.09 m*/t for [EXEl
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sample No. 14 to 31.25 m?/t for sample No. 3.

As an example, the average value for the three
samples is 30.05 m*/t. The Langmuir pressure varies
from 1.08 (sample No. 14) to 1.41 MPa (sample No.
10). The average value for the three samples is 1.27
MPa. Langmuir isotherm curves obtained for coal
samples are shown in Figure 4.

As a result, it is determined that the Langmuir
amount of methane is lower than the value of the
maximum capacity. Hence, the conclusion follows
that the coal seam is in an unsaturated state.
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Description of the empirical model

Let's use the results of our articles [6-8]. The
thickness of the surface layer in these works is defined
as follows:

R(D)y=017-10"v (m). (1)

From equation (1) it follows that the thickness
of the surface layer depends on one fundamental
parameter, which is called the molar (atomic) volume
of a chemical element and is equal to v=M/p, M is the
mole mass (g/mol), o is the element density (g/cm?).
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Figure 3 — Methane content and its changes with depth [5]
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From equation (1) it follows that the thickness
of the coal surface layer is determined by the molar
mass and its density. We will take the molar mass
from work [9], in which the molar mass of the carbon
substance is given by the expression:

Mo =130.385-C—1.941-0— )
—14042 - £+ 461.909 - N,

where M,y is the atomic mass of carbon in the
amount of 100, C, O is the amount of carbon and
oxygen, [, is the aromaticity degree, N is the number
of paramagnetic compounds.

Using formulas (1) and (2), let’s determine the
thickness of the surface layer of coal seams in the
Sherubaynura section of the Karaganda basin.

The thickness of the surface layer (Table) R(I)
of coal matter, is a nanostructure, but two orders
of magnitude greater than the thicknesses of pure
metals [6]. Here in parentheses is the number of coal
monolayers (~400-500) obtained by dividing R(J)
by the average distance (~0.36 nm) between coal
macromolecules determined by X-ray scattering (see
above). The thickness of the surface layer R(I) of the
carbon substance exceeds the technological limit
equal to 100 nm according to Gleiter [10]. A peculiarity
of the surface layer R(I) is that dimensional effects
occur here (Figure 5) [11].

Figure 5, a, b, c is completely similar to Figures
3 and 4. A feature of the R(I) layer are dimensional
effects, for which all the atoms are responsible. In
other words, we observe collective processes that
occur exclusively in nanostructures, they are also
called type II dimensional effects [12].

In this layer there are physical and chemical pro-
perties of nanomaterials: changing the crystalline
(supramolecular) structure of coal; changing its
electronic structure and its electrical conductivity;
changing the conditions of the stress state of coal;
changing the conditions of methane diffusion in coal

seams and many other phenomena. In works [6-8] the
formula for the description of dimensional effects in
any substance, including coal, is proposed:

A) =4-[L=R(D) /nLh>> R (D), @
A) =A-[L=R(D) /R +RLR(0) <k < R(D),

where A(h) is a physical property at the distance % (at
depth), 4, is a physical property in the bulk phase,
where there are no dimensional effects.

Methane diffusion in coal seams

Since the works of Krichevsky R.M. (1946),
hundred thousand articles have been dealing with
the mathematical description of methane transfer
from coal seams (for example, [13, 14]). Here we will
show how the dimensional effects in the coal matter
affect the stationary diffusion of methane, which, in
the simplest case, is described by the Fick's law:

4 (D(x) ~%(”)) =0. )

If the diffusion coefficient is a constant, i.e.,
D(zr)=const, then we have a simple classical Fick's
law. But in the case of the dimensional effect
the diffusion coefficient is expressed as follows:
D(x)=Di[1-R(I) /R(I)+z] and equation (4) is
transformed to the form:

x dC(z) _ 8,

stR(Q) dr D ®)

The constant &, represents the integration
constant. As a result, equation (5) takes the solution:

C@) =2 @ +R(Dna) + 5. ©®)

In the case when the diffusion coefficient in
equation (6) is constant, in other words, when D(z)
is constant in magnitude, we have the classical Fick

Surface layer thickness of medium coal seams

Coal seam Coal grade M — mole mass (g/mol) p — coal density (g/cm3) R(1), nm
) K 1351 1.27 180.8 (502)
Sherubaynura section
ocC 1340 1.56 146.0 (406)

b

Figure 5 — Dimensional dependence of the Au (a), temperature Curie TC (b), luminescence of oxides (c) [6-8] 211
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problem:
C(z) = 6.z +6.. @)

However, in equation (6) there is the following
feature, namely, in this equation appears the
logarithmic term. This unambiguously leads to
the fact that the series diverges at the origin of
coordinates. Therefore, it is necessary to take the
borderline conditions not at the point =0 but on the
contrary, at the point z=0.36 nm, which is equal to the
distance between the crystallographic planes of coal.
It is also essential that, according to expression (6),
the diffusion of methane in the coal seam depends on
both the coal grade through the diffusion coefficient
of bulk material, and on the dimensional dependence
of the coal seam. For the classical case, there is no
such dependence on the dimensional factor.

Let’s consider, as an example, the first boundary
problem, which has the form:

C@) |, = %10 (R(0)+R()InR(0))+65,=0C, ®)
@)y =S (RN + RDIMAM) +5.=C,

where R(0)=0.36 nm. From the system of equations
(8) it follows that:

C = % (R(0) +R(DInR(0)) + 6.,

€= 5 (R()+ R(D R (D) +8..

By subtracting expression one from expression,
we obtain:

0,

¢- .= 9 [(R(0)+ R(DWR(0)) -
(R + R WRD)] =5
81 — (Cl - Cz) 'Do

7/ Y

(.= C)-(R(0) +R()InR(0))
7 .

In general, the problem is represented as follows:

62201_

C(z) = (C_yﬂ (z+R(DInz) +C — o)
(=) -Dy- (R(0)+R()InR(0))
Y .

The solution in the case of Fick's law will be in
the form:

_ (C.—C)

Clx) = R -x+C.

(10)

The comparison of formulas (9) and (10) shows
that the methane diffusion of a nanometer-thick coal
seam is significantly different from that of a massive
sample. Equation (9) can be easily calculated on
modern computers when setting the experimental
values of the coal seam.

Conclusion

The article proposes a model by which the
thickness of the surface layer of coal of the Karaganda
basin is calculated. The model is based on the
equation in which one fundamental parameter is
the molar (atomic) volume of the coal matter. It is
equal to the fraction of the molar mass of coal and
its density. Currently, it is customary to consider
coal as a stable amorphous copolymer consisting of
aggregates of monomeric units linked by relatively
weak cross-links. We use the work of Moskalenko
and others, which shows that such a characteristic
as the «molecular weight» of coal, quite well reflects
the degree of metamorphism, and is decisive for
studying the composition and structure of coal raw
materials. Using the formula for calculating the
molecular weight of coal obtained in this work and
our model, we obtained the thickness of the surface
layer of coal in the Karaganda basin of ~150-200 nm.
It is 2 orders of magnitude greater than the thickness
of the surface layer of metals. This structure is a
nanostructure type. This layer possesses physical and
chemical properties of nanomaterials: changing the
crystal (supramolecular) structure of coal; changing
its electronic structure and its electrical conductivi-
ty; changing the conditions of the stress state of coal;
changing the conditions of methane diffusion in coal
seams and many other phenomena.

The article shows how dimensional effects in the
coal matter affect the stationary diffusion of methane,
which, in the simplest case, is described by the
Fick's law. It has theoretically been obtained that the
diffusion of methane in the coal seam depends on both
the coal grade through the diffusion coefficient of the
bulk material, and on the dimensional dependence of
the coal seam. For the classical case, there is no such
dependence on the dimensional factor.
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AHOamna. KaparaHobl anabeiHbiH LLlepybaliHypa yyackeciHOezi kemip KabamoiHbiH 6emKi KabamobiHbIH KabIHObIFbI-
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B Knaccuyeckom cnyyae makol 3a8ucumocmu Hem. Mo CKA3biBAeMCS HA MexaHU3me npomeKkaHus ducbd)ysuu me-
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