Методика обработки сигналов источника, излучаемых георадаром

¹ТОКСЕИТ Динара Қуандыққызы, докторант, dicow1@mail.ru, ^{1*}ИСКАКОВ Казизат Такуадинович, д.ф.-м.н., профессор, kazizat@mail.ru, ¹БОРАНБАЕВ Самат Акшабаевич, старший преподаватель, boranbaev_sa@mail.ru, ¹Евразийский национальный университет им. Л.Н. Гумилева, Казахстан, 010008, Нур-Султан, ул. Сатпаева, 2,

*автор-корреспондент.

Аннотация. В работе рассматривается алгоритм восстановления табличного значения источника на данных георадара серии Лоза-В. Рассмотрена математическая модель уравнения геоэлектрики в цилинстый песок», с известными геофизическими свойства: диэлектрической проницаемости, проводимости. При таком выборе модели среды рассматриваемое уравнение геоэлектрики сводится к дифференциальному уравнению Риккати, для которой получим явное аналитическое решение, связывающее спектр функции реальных данных радара и спектр функции, описывающей источник. Применяя обратное преобразование Фурье по вычисленному спектру источника, восстановлен источник в табличном формате. Проведены экспериментальные исследования при различных расположениях антенны георадара «Лоза-В». Результаты численных расчетов показывают эффективность математической модели по восстановлению источника.

Ключевые слова: уравнение геоэлектрики, георадар, математическая модель, цилиндрическая система координат, уравнения Рикатти, метод послойного пересчета, обратное преобразование Фурье, экспериментальные исследования, спектр трассы радарограммы, спектр источника.

Введение

Электромагнитные методы исследования подповерхностных структур применяются для поиска и неразрушающего исследования полезных ископаемых в геологии, контроля и диагностики объектов в области строительства, в задачах археологии и во многих областях естествознания. Для исследования используются специальные геофизические приборы (георадары). Теоретические основы и практическое применение для решения такого сорта задач георадиолокации описаны в работе [1].

Георадары имеют встроенное программное обеспечение, выходная информация которого представляет собой радарограмму. На практике для интерпретации радарограмм используют методику подбора, суть которой состоит в сравнении полученных радарограмм с имеющимися в базе стандартными видами, а также дополнительными расчетами, основанными на теории распространения волн в среде.

С другой стороны, существует иное направление интерпретации радарограмм, а именно математическое и компьютерное моделирование процесса распространения и отражения электромагнитных волн в среде. Радарограмма несет информацию о времени пробега до неоднородности, а на практике возникает интерес определить физические характеристики неоднородности.

При георадарных исследованиях известные данные измерения, полученные приемником, являются откликом среды в точке измерения как функции от времени пробега. В дальнейшем данные используются как дополнительная информация для решения обратных коэффициентных задач. Для решения обратной задачи используем методы оптимизации, суть которой состоит в минимизации квадратичного функционала невязки рассчитанных и наблюдаемых полей (данные приемной антенны прибора).

При численном моделировании решения обратной коэффициентной задачи встает вопрос о табличном значении источника возмущения, а также табличного значения отраженных сигналов (откликов сред) в точках измерений. Для решения этих вопросов нами разработаны алгоритмы восстановления источника.

В случае отраженных электромагнитных сигналов к физическим характеристикам исследуемых объектов относятся: диэлектрическая и магнитная проницаемость, проводимость сред. Теоретические основы и вопросы численного ме- 323

■ Труды университета №1 (86) • 2022

тода решения обратных задач для уравнения геоэлектрики подробно освещены в монографии С.И. Кабанихина [2]. Применение оптимизационных методов для решения коэффициентных обратных задач для дифференциальных равнений и численных методов их решения изложены в монографии К.Т. Искакова и др. [3].

Целью георадарных исследований является определение электрических свойств среды. В рамках нашей модели нам нужно восстановить функцию удельной диэлектрической проницаемости $\varepsilon(z)$ в зависимости от глубины z. Как показано в [4], знание функции источника $\Phi(t)$ сигнала, поступающего в среду, позволяет на основе измерений напряженности поля на поверхности среды приближенно определить функцию скорости распространения волны v(z). Далее функция удельной диэлектрической проницаемости вычисляется через скорость c(z) по известной формуле

$$oldsymbol{arepsilon}\left(z
ight)=\mu_{\scriptscriptstyle 0}^{\scriptscriptstyle -1}v^{\scriptscriptstyle -2}(z)$$
 .

Здесь $\mu_0 = 4\pi^* 10^{-7}$ Гн/м есть коэффициент удельной магнитной проницаемости, который мы полагаем постоянным во всем пространстве.

В использованных нами георадарах функция источника не была заранее известна. Поэтому, прежде чем определять распределение диэлектрической проницаемости среды, необходимо было найти функцию $\Phi(t)$. Поэтому по данным георадара, полученным на однородной среде в виде чистого песка, сначала определяется функция источника [5], а затем по методу [4] вычисляется распределение v(z) и соответствующее распределение диэлектрической проницаемости $\varepsilon(z)$. Применение инженерно-технических приемов по определению геоэлектрического разреза: диэлектрической и магнитной проницаемости; проводимости и глубины залегания неоднородности посвящены работы [6]-[9].

В работе [10] исследована обратная задача в частотной области и представлен численный алгоритм решения обратной задачи для уравнения Гельмгольца.

Для случая слоистых сред широкое распространение получил метод послойного пересчёта. Далее идея послойного пересчета была реализована в следующем виде. Дифференциальное уравнение могут быть сведены с помощью специальной замены функций к дифференциальному уравнению Риккати, решение которой могут быть записаны в аналитическом виде [11].

Нами рассматривается уравнение геоэлектрики, в цилиндрической системе координат в частотной области. Рассматриваемые уравнения сведены с помощью специальной замены функций к дифференциальному уравнению Риккати.

Проведены экспериментальные исследования на лабораторном полигоне с использованием прибора «Лоза-В». Реальные данные использова-324 ны для численного расчета по определению формы и табличного значения излучаемого сигнала. В работе используются также методика по восстановлению сигналов по спектру на основе применения Фурье преобразований, как в работе [3].

1. Методика обработки сигналов

Процесс распространения электромагнитных волн в среде описывается системой уравнения Максвелла. При специальном выборе источника возмущения и при предположении, что функции, описывающие геоэлектрический разрез, зависят от глубины, то в таком случае система уравнений Максвелла упроститься и мы имеем постановку задачу для уравнения геоэлектрики [2].

Введем в рассмотрение уравнение геоэлектрики в цилиндрической системе координат

$$\varepsilon u_{ut} + \sigma u_t = \frac{1}{\mu} \Big(u_{rr} + \frac{1}{r} u_r + u_{zz} \Big) + \frac{1}{r} \delta(r) \times$$
(1)

$$\times \delta(z - z_*) q(t).$$

Положим, что что поле находится до возмущения в состоянии покоя, тогда начальные условия, имеют вид:

$$u(0,x,y,z) = 0, \quad u_t(0,x,y,z) = 0.$$
 (2)

Считаем, что $\partial u/\partial r$ при r=0 – ограничена.

Здесь принятые обозначения: и-горизонтальная компонента вектора электрической напряженности; є – диэлектрическая проницаемость; μ – магнитная проницаемость; σ – проводимость, g(t) – источник.

Пусть

$$artheta(
u,z,oldsymbol{\omega})=\int\limits_{-\infty}^{\infty}e^{i\omega t}\int\limits_{0}^{\infty}u(r,z,t)rJ_{0}(
u r)\,drdt.$$

Под интегралом *J*⁰ функция Бесселя.

Тогда, после несложных вычислений, задача (1)-(2) примет вид:

$$\vartheta_{zz} - k^2(z)\vartheta = \delta(z - z_*)\overline{g}(\omega), \tag{3}$$

$$[\vartheta_z]_0 = 0, \quad [\vartheta]_0 = 0. \tag{4}$$

Поступая стандартном образом, с учетом определения обобщенной производной $\vartheta_z = \{\vartheta_z\} + [\nu]_{z_*} \delta(z - z_*),$ задача (3)-(4), примет вид:

$$\vartheta_{zz} - k^2(z)\vartheta = 0, \tag{5}$$

$$[\vartheta_z]_0 = 0, \quad [\vartheta]_0 = 0, \tag{6}$$

$$[\vartheta_z]_{z_*} = \hat{g}(\omega), \quad [\vartheta]_{z_*} = 0. \tag{7}$$

Здесь принятые обозначения: $k^2 = \nu^2 - \omega^2 \varepsilon \mu +$ $+i\omega\mu\sigma$, $\vartheta(r_0,0,\omega)$ – функция частотного распределения сигнала.

Используя технику работ [11], запишем уравнение Риккати:

$$\begin{aligned} \vartheta_z &= s\vartheta \Rightarrow s' + s^2 = k^2, \ z \in (-\infty, z_*], \ z \in [0, \infty), \quad (8) \\ s(z) &= k_0, \\ s(z) &= -k_1 = s^0. \end{aligned}$$

$$\vartheta(r_{0},0,\omega) = -\hat{g}(\omega) \times \\ \times \int_{0}^{\infty} \frac{\nu J_{0}(\nu r_{0})}{\sqrt{\nu^{2} - (\omega^{2}\mu_{0}\varepsilon_{1} - i\omega\mu_{0}\sigma_{1})} + \sqrt{\nu^{2} - \omega^{2}\mu_{0}\varepsilon_{0}}} d\nu.$$
⁽⁹⁾

2. Экспериментальные исследования

Экспедиция под руководством профессора ЕНУ имени Л.Н Гумилева Искакова К.Т., а также старшего преподавателя Боранбаева С.А., докторанта Токсеит Д.К. провела эксперименты на лабораторном полигоне (песчаный карьер ТОО «Нурсат»), находящейся в 68 км от города Нур-Султан по Кургальджинской трассе. Для задачи восстановления источника подобрали участок – «чистый песок», с известными геоэлектрическими характеристиками.

Проведены экспериментальные измерения с применением георадара серии «Лоза-В».

На рисунке 1 приведен участок «чистый песок» и процесс измерения членами экспедиции.

Задача исследования состоит: в геофизическом обследовании структуры однородного чистого песка; моделировании источника импульса от прибора Лоза-В, определении спектральных характеристик сигналов, излучаемых антенной.

Для измерения выбран однородный участок – «чистый песок», как показано на рисунке 1, размечена область измерения с размерами 8 метров в ширину и в длину. Проведены эксперименты, для отличия здесь и в дальнейшем обозначим их:

- Эксперимент 1: Источник георадара помещен в центре, а антенна располагалась на расстоянии 4 метра;

Рисунок 1 – Измерения прибором георадара «Лоза-В»

- Эксперимент 2: Источник помещен в центре, а антенна располагалась на расстоянии 3 метра;

Графики трасс или, иначе говоря, отклики среды представлены на рисунках 2-3. Частота дискретизации АЦП георадара серии: «Лоза-В» 2000

МГц. Количество отсчетов равно 512. Временной интервал 0-256 нс. Данные радарограммы, имеющие свой формат, переведены в текстовый формат табличных значений сигналов.

Обработка сигнала: сигналы, полученные от георадара серий «Лоза-В», выдаются в формате «geo». Для получения анализа и визуализации сигнала необходимо перейти от бинарного формата файла «geo» в формате «txt». Преобразованный файл «txt» состоит из трех колонок: x, t, Alg. Здесь: *х* – номер данных, полученных от каждой точки, по умолчанию x=0...10; T – time, T0=0нс, *T*512=255,5 нс, с шагом 0,5 нс; Alg – значения амплитуды.

Для кодирования значения амплитуды аналогового сигнала обычно используется 8 или 16-битное представление значений амплитуды. Если при оцифровке используется 8-битное кодирование, то измерения амплитуды аналогового сигнала будут производиться с точностью до 1/256 от динамического диапазона цифрового устройства (8 бит позволяют представить 28 чисел – 256), т.е. цифровой сигнал в такой кодировке - это набор чисел от 0 до 255 (или – 128 до 127). Такая точность недостаточна для достоверного восстановления исходного сигнала: будут велики нелинейные искажения. Если повысить разрядность представления значений амплитуды аналогового сигнала до 16 бит, то точность измерения возрастет до 265 раз. 16 бит позволяют закодировать 216=65536 значений амплитуды, т.е. цифровой сигнал – это набор чисел от 0 до 65535 (или -32768 до 32767). 326 Такая точность кодирования позволяет нелинейные искажения свести к минимуму. Цифровой сигнал не имеет общепринятых единиц измерений, а представляет из себя безразмерный набор чисел.

На рисунке 2 представлено графическое изображение отклика эксперимента 1.

Отклик среды, полученных по измерениям эксперимента 2, приведен на рисунке 3.

3. Численные расчеты

Спектр трассы радарограммы, эксперимента 1 (отклика среды), представлен на рисунке 4.

Частотная шкала графика изменяется от 0 до 1000 МГц. Модуль значений частотного распределения сигнала $v(r_0, 0, \omega)$ эксперимента 2 изображен на рисунке 5.

Имея спектры трассы радарограмм, принимая во внимание формулу (9), получим:

$$\begin{split} \vartheta(r_{0},0,\boldsymbol{\omega}) &= -\hat{g}\left(\boldsymbol{\omega}_{i}\right) \times \\ \times \int_{0}^{\infty} \frac{\nu J_{0}\left(\nu r_{0}\right)}{\sqrt{\nu^{2} - \left(\boldsymbol{\omega}_{i}^{2} \mu_{0} \boldsymbol{\varepsilon}_{1} - i \boldsymbol{\omega}_{i} \mu_{0} \boldsymbol{\sigma}_{1}\right)} + \sqrt{\nu^{2} - \boldsymbol{\omega}_{i}^{2} \mu_{0} \boldsymbol{\varepsilon}_{0}}} d\nu, (10) \\ i &= 1, ..., n/2. \end{split}$$

Интеграл от комплексной функции в уравнении (10) запишем иначе:

$$\int_{0}^{\infty} \frac{\nu J_{0}(\nu \tau_{0})}{\sqrt{\nu^{2} - (\omega^{2} \mu_{0} \varepsilon_{1} - i\omega \mu_{0} \sigma_{1})} + \sqrt{\nu^{2} - \omega^{2} \mu_{0} \varepsilon_{0}}} d\nu =$$

$$= \int_{0}^{\infty} f(\nu) d\nu.$$
(11)

Для численного вычисления интеграла (11)

Рисунок 4 – Спектр трассы радарограммы, по данным эксперимента 1

применим итерационный метод прямоугольников (или трапеции).

$$\int_{0}^{\infty} f(\nu) d\nu \approx h \sum_{j=0}^{\infty} f(\nu_{j}).$$
(12)

Для вычисления выбираем заданную точность

 ε и требуем выполнения условия $|f(\nu_j)| < \varepsilon$.

Для проведения численных расчетов рассмотрены следующие параметры: $\varepsilon_0 = 1, \ \varepsilon_1 = 5, \ \mu_0 = 1,$ $r_0 = 1, \sigma_1 = 1/500.$

Графики спектра источника для экспериментов 1, 2 изображены на рисунках 6,7.

Далее обратным преобразованием Фурье 327

спектра $g(\omega)$ находим абсолютный сигнал источника (комплексный). График действительной части сигнала источника, в случае эксперимента 1, изображен на рисунке 8.

328

На рисунке 9 изображен график восстанов-

ленного источника при расположении антенны от источника на расстоянии 3 метра.

Графики восстановленного источника сигнала, по данным экспериментов 1, 2, пронормированы относительно максимального значения амплиту-

Рисунок 8 – График восстановленного источника сигнала, по данным эксперимента 1

ды. Табличные значения, например, для востановленного источника представлены в таблице.

Примечание: Радарограмма георадара Лоза состоит из нескольких трасс (сеансов) приема сигналов, отраженных из подповерхностных объектов. Каждый сеанс состоит из 512 оцифрованных через 0,5 нс. значений полученного аналогового радиосигнала. Для работы взято только 256 значений. Остальная часть состоит из постоянных значений, соответствующий нулевому сигналу (в это время отраженный сигнал отсутствует). Отраженный сигнал от подповерхностного объекта (источник) 329

■ Труды университета №1 (86) • 2022

BeemsAmmaryageBeems
0 0.41222 26 0.0022012 52 -0.013352 78.5 0.003445 10.4 0.003 1 0.051549 27 0.018683 53 -0.04717 79 0.023661 10.5 0.002 1.5 -0.30786 27.5 -0.064489 54 -0.022749 80 0.01891 106 0.022 2.0<43065 28 -0.032324 54.5 0.0032718 80.5 0.002846 106.5 0.044 3 0.26126 29 -0.010807 55.5 0.0039729 81.5 0.002450 10.5 0.002 4.5 -0.21208 30.5 0.050918 56.5 0.0075724 82.5 0.023821 10.9 0.00 5.5 -0.6008 31.5 -0.017276 57.5 -0.00863 33.5 -0.005298 10.5 -0.03 5.5 -0.6008 32.5 -0.02176 57.5 -0.01621 111 0.022 5.6 -0.6008 32.5 -0.
0.5 0.32005 26.5 0.0065049 52.5 -0.031248 78.5 0.032455 104.5 0.042 1 0.03766 27.5 -0.016803 53 -0.042711 79 0.010792 105.5 0.004722 2 -0.43065 28.8 -0.064489 54.5 -0.022749 80.5 -0.020841 10.6 0.027 3 0.38048 28.5 -0.010807 55.5 0.0039729 81.5 -0.0042167 10.7 0.004 4 0.99988 30 -0.0075702 56.5 0.0015844 82.5 0.0028282 10.8 0.007 5. -0.6008 31.5 -0.015726 57.5 -0.0086643 83.5 -0.002283 10.8 -0.01 5. -0.6008 32.5 -0.016075 58.5 0.007574 84.5 -0.002284 11.0 0.022 5. -0.6008 32.5 -0.016705 58.5 0.007516 85.5 -0.004217 11.5 0.063
1 0.051549 27 0.018683 53 -0.04571 79 0.02361 105 0.002 1.5 -0.030786 27.5 -0.016949 54 -0.025749 80 0.018591 106 0.022 2.5 -0.87448 28.5 -0.03254 54.5 0.0025718 80.5 0.021804 106 0.02 3.5 0.38089 29.5 -0.010877 55.5 0.018844 81 0.016104 10.7 0.04 4 0.99998 30 -0.0075702 55.6 0.001584 82.5 0.028252 10.8 0.005 5.5 -0.0608 31.5 -0.015726 57.5 -0.006238 83.5 -0.005298 10.5 -0.005 3.5 -0.00503 11.0 0.002 5.5 -0.0608 32.5 -0.04607 58.5 0.007518 85.5 0.00172 11.1 0.022 5.5 -0.06083 32.5 -0.04637 59.5 0.007616 85.5 <td< td=""></td<>
1.5 -0.30786 27.5 -0.06489 53.5 -0.04623 79.5 0.01792 105.5 0.042 2.5 -0.37448 2.85 -0.02324 54.5 0.003274 80.5 0.02346 106.5 0.04 3.5 0.38089 2.95 -0.010807 55.5 0.003770 81.5 0.004216 10.7 0.02 4.5 -0.21208 30.5 0.007572 55.5 0.003774 82.5 0.002824 10.8 0.00 5.5 -0.02081 31.5 0.007572 57.5 -0.008643 83.5 0.002823 10.9 -0.02 5.5 -0.6024 2 -0.04193 58.5 -0.008643 83.5 -0.002283 10.9 -0.02 5.5 -0.60243 3.2 -0.04607 58.5 0.00518 85.5 -0.002283 11.0 0.02 5.5 -0.02474 3.5 -0.02473 59.5 0.005284 11.1 0.02 5.0 -0.024747
2 -0.43065 28 -0.03428 54. -0.02279 80. 0.018591 106. 0.022 2.5 -0.87448 28.5 -0.03254 54.5 0.0052718 80.5 0.02846 10.0 0.005 3.5 0.38089 29.5 -0.010807 55.5 0.0039729 81.5 0.0042167 107.5 0.016 4. 0.99988 30 -0.0075720 56.5 0.0015744 82.5 0.028252 10.8 0.005 5. -0.0201 31.5 -0.015726 57.5 -0.018643 83.5 -0.002329 10.9 -0.02 5.5 -0.6088 31.5 -0.01721 58.5 -0.002308 84.5 -0.002393 11.5 -0.03 6. -0.4229 33.5 -0.06807 58.5 0.0075161 85.5 0.019549 11.5 0.064 7.5 0.19619 33.5 -0.06837 59.5 0.002426 86 0.01717 11.5 0.024
1.5. -0.87448 28.5 -0.033254 54.5 0.0082718 80.5 0.020846 10.6.5 0.0424 3. 0.26126 29 -0.02707 55 0.018844 82 0.016216 10.7 0.02 3.5 0.30898 29.5 -0.010570 55.6 0.0015844 82 0.03105 108.5 0.002 4.5 -0.01088 3.5 0.005726 57.5 -0.008643 83.5 0.0022328 10.95 -0.02 5.5 -0.0608 3.2 -0.041939 58.5 -0.025789 84.5 0.005238 10.95 -0.01 6.5 0.40698 3.25 -0.06887 59 0.005118 85.5 0.01021 11.1 0.022 7 0.49291 3.3 -0.00887 60.5 -0.0349 86.5 0.014717 11.2 0.024 8 0.41766 34 -0.008697 61.5 -0.024134 87.5 0.02441 11.5 0.044 <
3 0.26126 29 -0.029707 55 0.018864 81 0.016516 107 0.02 3.5 0.3808 29.5 -0.010807 55.5 0.003729 81.5 0.0042167 107.5 0.04 4 0.99988 30 -0.007572 56 0.0015724 82.5 0.022852 108.5 0.005 5.5 -0.6008 31.5 -0.015726 57.5 -0.008643 83.5 -0.02289 109.5 -0.03 6 -0.6424 32.2 -0.04007 58.5 0.025018 85.5 -0.01721 111 0.022 7.5 0.40698 32.5 -0.06867 60 -0.0042262 86 0.04177 112 0.064 8 0.4176 33.5 -0.06867 60 -0.0042262 86 0.044177 112 0.064 8.5 0.094352 34.5 0.008697 60 -0.0042262 86 0.044177 112 0.064 9.
3.5 0.38089 29.5 -0.010807 55.5 0.003772 81.5 0.0042167 107.5 0.044 4 0.99998 30 -0.0075702 56 0.0015844 82 0.012705 108 0.00 4.5 -0.70291 31 0.027523 57 -0.014573 83 0.0085324 109 -0.02 5.5 -0.6008 31.5 -0.015726 57.5 -0.0086643 83.5 -0.0052298 101 0.000 6.5 0.40698 32.5 -0.041939 58 -3.2443e-05 84 0.005293 110 0.002 7 0.49229 33 -0.05068 59 0.005118 85 -0.010721 111 0.024 8.5 0.094352 34.5 0.00367 60.5 -0.02349 86.5 0.046791 112.5 0.044 9 -0.024274 35 0.001039 61.5 -0.02411 88.5 -0.02591 113 0.025 9.5
4 0.99998 30 -0.0075702 56 0.0015844 82 0.031705 108 0.02 4.5 -0.70291 31 0.027523 57 -0.014573 83 0.0028524 109 -0.03 5.5 -0.6008 31.5 -0.015726 57.5 -0.006643 83.5 -0.005229 10.9 -0.01 6. -0.6424 32 -0.04007 58.5 0.025789 84.5 7.0556-05 11.0 0.007 7. 0.49229 33 -0.05068 59 0.0076161 85.5 0.01971 11.1 0.026 8 0.41766 34 -0.0086976 60 -0.0042162 86 0.04177 11.2 0.046 8.5 0.094352 34.5 0.0031367 60.5 -0.023149 86.5 0.046793 11.5 0.047 9 -0.024274 35 0.01039 61 -0.02414 87.5 0.029591 11.3 0.027 9.5
4.5 -0.21208 30.5 0.050918 56.5 0.0075724 82.5 0.022852 108.5 0.008 5.5 -0.6008 31.5 -0.015726 57.5 -0.0086643 83.5 -0.002298 109 -0.02 5.5 -0.6424 32 -0.041939 58 -3.2443e-05 84 0.0052983 110 0.000 6.5 0.40698 32.5 -0.046007 58.5 0.025789 84.5 7.0556e-05 11.5 -0.01 7.5 0.19619 33.5 -0.0085976 60 -0.0042262 86 0.044177 112 0.044 8.5 0.094352 34.5 0.0031367 60.5 -0.023349 86.5 0.024017 111.5 0.044 9 -0.024274 35 0.01039 61.5 -0.024114 88.5 0.029401 113.5 0.044 10 -0.19403 35.5 -0.02147 61.5 -0.02414 88.5 -0.02983 114.5 0.003
5 -0.70291 31 0.027523 57 -0.014573 83 0.0085324 109 -0.02 5.5 -0.6008 31.5 -0.015726 57.5 -0.0086643 83.5 -0.005228 10.05 -0.03 6 -0.6424 32 -0.041939 58 -3.2443e-05 84 0.005283 110 0.002 7 0.49229 33 -0.06087 59.5 0.005518 85 -0.010721 111 0.022 8 0.41766 34 -0.08376 60 -0.042262 86 0.044177 112 0.084 8.5 0.094352 34.5 0.003167 61.5 -0.02349 85.5 0.02474 30 0.0239 9.5 -0.024274 35 0.001039 61 -0.020418 87.5 0.02931 113.5 0.042 10 -0.12403 36 -0.02417 61.5 -0.02114 88.5 -0.02823 114.5 0.005 11.5
5.5 -0.6008 31.5 -0.015726 57.5 -0.0086643 83.5 -0.0052288 10.9 -0.03 6 -0.6424 32 -0.040097 58 -3.2443e-05 84 0.0062893 11.0 0.000 6.5 0.40698 32.5 -0.046007 58.5 0.0055018 85 -0.01721 111 0.024 7 0.49229 33 -0.06837 59.5 0.0076161 85.5 0.01721 111.5 0.064 8 0.41766 34 -0.008376 60.5 -0.023349 86.5 0.046793 112.5 0.044 9 -0.024274 35 0.0024157 61.5 -0.02349 86.5 0.029401 113.5 0.024 9.5 -0.083419 35.5 -0.02349 62.5 -0.021714 88 0.039578 114 0.005 10.5 0.048626 36.5 -0.02343 63.5 -0.02438 89.5 -0.03953 116 0.012
6 -0.6424 32 -0.041939 58 -3.2443e-05 84 0.0062893 110 0.0005 6.5 0.40698 32.5 -0.040007 58.5 0.025789 84.5 7.0556e-05 110.5 -0.011 7 0.49229 33 -0.050837 59.5 0.0075161 85.5 0.01721 111 0.022 8 0.41766 34 0.0086976 60 -0.0042262 86 0.044177 112 0.064 8 0.01721 35 0.0031367 60.5 -0.023349 86.5 0.044177 113 0.021 9 -0.024274 35 0.01039 61 -0.05825 87 0.02591 113 0.021 9.5 -0.08419 35.5 -0.024157 61.5 -0.02141 88.5 -0.02591 114 0.005 10 -0.04133 36.5 -0.02349 62.5 -0.02041 88.5 -0.01832 115.5 0.012 11.5
6.5 0.40698 32.5 -0.04007 58.5 0.025789 84.5 7.0556e-05 110.5 -0.012 7 0.49229 33 -0.05068 59 0.0055018 85 -0.010721 111 0.022 7.5 0.19619 33.5 -0.06837 59.5 0.0076161 85.5 0.019549 111.5 0.064 8 0.41766 34 -0.008976 60 -0.002349 86.5 0.044177 112 0.084 9 -0.024274 35 0.010039 61 -0.05825 87 0.02591 113 0.027 9.5 -0.083419 35.5 -0.021457 61.5 -0.02041 88.5 -0.029823 114.5 0.003 10.5 0.048626 36.5 -0.023049 62.5 -0.02041 88.5 -0.02823 115.5 0.066 11.5 -0.2043 37.5 -0.003281 63.5 0.014138 89.5 -0.01383 115.5 0.064
7 0.49229 33 -0.050068 59 0.0055018 85 -0.010721 111 0.022 7.5 0.19619 33.5 -0.06837 59.5 0.0076161 85.5 0.019549 111.5 0.064 8 0.41766 34 -0.008376 60.5 -0.024226 86 0.044177 112 0.084 9 -0.024274 35 0.010039 61.5 -0.023138 85.5 0.029401 113.5 0.042 9.5 -0.0284219 35.5 -0.02177 61.5 -0.021714 88 0.0055978 114 0.005 10 -0.19403 36 -0.023049 62.5 -0.02041 88.5 -0.029823 114.5 0.003 11.5 -0.20443 37.5 -0.003081 63 -0.002417 90 0.0063583 116 0.012 12. -0.12149 38 0.02373 64 0.02477 90 0.0063583 116 0.012 12.5
7.5 0.19619 33.5 -0.06837 59.5 0.0076161 85.5 0.019549 111.5 0.064 8 0.41766 34 -0.0086976 60 -0.0042262 86 0.044177 112 0.084 8.5 0.094352 34.5 0.0031367 60.5 -0.023349 86.5 0.046793 112.5 0.041 9 -0.024274 35 0.01039 61 -0.050825 87 0.02901 113.5 0.047 9.5 -0.084819 35.5 -0.021457 61.5 -0.02141 87.5 0.02901 113.5 0.045 10.5 0.048626 36.5 -0.022049 62.5 -0.02041 88.5 -0.03953 114 0.005 11.5 -0.02443 37.5 -0.0053281 63.5 0.01438 89.5 -0.01832 115.5 0.006 12.5 0.10789 38.5 0.01833 64.5 0.0049148 90.5 0.011128 16.5 -0.002 <t< td=""></t<>
8 0.41766 34 -0.0086976 60 -0.0042262 86 0.04177 112 0.084 8.5 0.094352 34.5 0.0031367 60.5 -0.023349 86.5 0.046793 112.5 0.041 9 -0.024274 35 0.010039 61 -0.050825 87 0.02591 113 0.021 9.5 -0.084319 35.5 -0.024157 61.5 -0.049113 87.5 0.029401 113.5 0.044 10 -0.19403 36 -0.006622 62 -0.021714 88 0.0055978 114 0.005 10.5 0.048626 36.5 -0.023049 62.5 -0.020417 89 -0.039954 115 0.014 11.5 -0.20443 37.5 -0.0053281 63.5 0.014138 89.5 -0.01832 115.5 0.006 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116 0.012 <td< td=""></td<>
8.5 0.094352 34.5 0.0031367 60.5 -0.023349 86.5 0.046793 112.5 0.041 9 -0.024274 35 0.010039 61 -0.050825 87 0.029411 113.5 0.044 9.5 -0.083419 35.5 -0.024157 61.5 -0.049113 87.5 0.029401 113.5 0.040 10 -0.19403 36 -0.02622 62 -0.021714 88 0.025978 114 0.005 10.5 0.048626 36.5 -0.023049 62.5 -0.02041 88.5 -0.029823 114.5 0.003 11 -0.065349 37 -0.0053281 63.5 0.01438 89.5 -0.01832 115.5 0.012 12.5 0.10789 38.5 0.018533 64.5 0.004417 90 0.0063583 116 0.012 13.5 -0.28473 39.5 -0.0109 65.5 0.0074987 91.5 0.053188 117.5 1.126 <
9 -0.024274 35 0.010103 610 -0.02037 113 0.0213 9.5 -0.024274 35 0.01013 61.5 -0.049113 87.5 0.02941 113.5 0.040 10 -0.19403 36 -0.023049 62.5 -0.021714 88 0.0055978 114 0.005 10.5 0.048626 36.5 -0.023049 62.5 -0.02041 88.5 -0.029823 114.5 0.003 11.5 -0.20443 37.5 -0.030863 63 -0.0061067 89 -0.039954 115 0.014 11.5 -0.20443 37.5 -0.0053281 63.5 0.01438 89.5 -0.01832 115.5 0.065 12.5 0.10789 38.5 0.018533 64.5 0.0049148 90.5 0.011128 116.5 -0.002 13.5 0.10789 38.5 0.018533 64.5 0.004918 90.5 0.011128 116.5 -0.002 13.5 0.018
9.5 -0.083419 35.5 -0.02157 61.5 -0.002011 87.5 0.02201 11.3 0.004 10 -0.19403 36 -0.00622 62 -0.021714 88 0.0055978 114 0.005 10.5 0.048626 36.5 -0.023049 62.5 -0.02041 88.5 -0.029823 114.5 0.003 11 -0.065349 37 -0.030863 63 -0.0061067 89 -0.039954 115.5 0.065 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116 0.013 12.5 0.10789 38.5 0.01833 64.5 0.0049148 90.5 0.011128 116.5 -0.002 13 0.019509 39 -0.018129 65 -0.0046685 91 0.046367 117 -0.000 14.5 -0.08066 40.5 -0.01039 66.5 -0.0039473 92.5 0.0036303 118.5 0.017
10 -0.19403 36 -0.00622 62 -0.021714 88 0.0055978 114 0.005 10 -0.19403 36 -0.006622 62 -0.021714 88 0.0055978 114 0.005 10.5 0.048626 36.5 -0.023049 62.5 -0.02041 88.5 -0.023954 115 0.004 11.5 -0.20443 37.5 -0.0053281 63.5 0.011438 89.5 -0.01832 115.5 0.065 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116 0.013 13.5 0.01789 38.5 0.01823 64.5 0.0049148 90.5 0.011128 116.5 -0.002 13 0.019509 39 -0.01089 65.5 0.0074987 91.5 0.053188 117.5 1.126 14 -0.088766 40 -0.019437 66 -0.0039473 92.5 0.0036303 118.5 0.017
10.5 0.048226 3.6 0.003022 0.0 0.02141 8.6 0.029823 114 0.003 10.5 0.048226 36.5 -0.02049 62.5 -0.02041 88.5 -0.029823 114.5 0.004 11.5 -0.0443 37.5 -0.0053281 63.5 0.011438 89.5 -0.01832 115.5 0.005 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116 0.013 12.5 0.10789 38.5 0.018533 64.5 0.004418 90.5 0.011128 116.5 -0.002 13 0.019509 39 -0.018129 65 -0.004685 91 0.046367 117 -0.000 13.5 -0.28473 39.5 -0.0109 65.5 0.0074987 91.5 0.053188 117.5 1.1263 14 -0.08066 40.5 -0.036594 66.5 -0.0039473 92.5 0.0036303 118.5 0.017 <t< td=""></t<>
11. 0.046620 30.5 0.023042 0.02141 0.02141 0.02235 114.3 0.0014 11. -0.06349 37 -0.030863 63 -0.0061067 89 -0.039954 115 0.014 11.5 -0.20443 37.5 -0.0053281 63.5 0.011438 89.5 -0.018322 115.5 0.061 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116 0.013 12.5 0.10789 38.5 0.018533 64.5 0.0049148 90.5 0.011128 116.5 -0.002 13 0.019509 39 -0.018129 65.5 0.0074987 91.5 0.046367 117 -0.000 13.5 -0.28473 39.5 -0.0109437 66 -0.001979 92 0.04075 118 -0.017 14. -0.088766 40 -0.019437 66.5 -0.0039473 92.5 0.0023164 119 0.11 15.5 </td
11 -0.003349 37 -0.0053281 63 -0.001107 89 -0.053934 113 0.014 11.5 -0.20443 37.5 -0.0053281 63.5 0.011438 89.5 -0.01832 115.5 0.065 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116. 0.013 12.5 0.10789 38.5 0.018533 64.5 0.004685 91 0.046367 117 -0.002 13.5 -0.28473 39.5 -0.01009 65.5 0.0074987 91.5 0.053188 117.5 1.1263 14 -0.088766 40 -0.019437 66 -0.0039473 92.5 0.0036303 118.5 0.017 15.5 -0.13412 41.5 -0.01462 67.5 0.0086118 93.5 -0.0023164 119.5 0.113 15.5 -0.13412 41.5 -0.01462 67.5 0.0086118 93.5 0.002164 119.5 0.113
11.5 -0.20443 37.5 -0.0033281 65.5 0.011438 89.5 -0.01832 115.5 0.066 12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 116 0.013 12.5 0.10789 38.5 0.018533 64.5 0.0049148 90.5 0.011128 116.5 -0.002 13 0.019509 39 -0.018129 65 -0.0046685 91 0.046367 117 -0.000 13.5 -0.28473 39.5 -0.01009 65.5 0.0074987 91.5 0.053188 117.5 1.1263 14 -0.088766 40 -0.019437 66 -0.0039473 92.5 0.0036303 118.5 0.017 15 -0.080966 40.5 -0.010462 67.5 0.0086118 93.5 -0.0023164 119.5 0.11 15.5 -0.13412 41.5 -0.010462 67.5 0.0086118 93.5 -0.0023164 119.5 0.11 16.5 -0.046069 42.5 0.0038947 68.5 -0.023879
12 -0.12149 38 0.02373 64 0.024477 90 0.0063583 118 0.018 12.5 0.10789 38.5 0.018533 64.5 0.0049148 90.5 0.011128 116.5 -0.002 13 0.019509 39 -0.018129 65 -0.0046685 91 0.046367 117 -0.000 13.5 -0.28473 39.5 -0.01009 65.5 0.0074987 91.5 0.053188 117.5 1.1263 14 -0.080966 40.5 -0.036594 66.5 -0.0039473 92.5 0.0036303 118.5 0.017 15 -0.080966 40.5 -0.01462 67.5 0.0086118 93.5 -0.0023164 119.5 0.11 16.5 -0.046069 42.5 0.0038947 68.5 -0.013541 94 -0.015819 120 0.11 16.5 -0.046069 42.5 0.0038947 68.5 -0.023879 94.5 0.00051927 120.5 0.008 17 -0.01707991 43 0.012519 69 -0.024753
12.50.1078938.50.01833364.50.004914890.50.011128116.5-0.002130.01950939-0.01812965-0.0046685910.046367117-0.00013.5-0.2847339.5-0.0100965.50.007498791.50.053188117.51.12614-0.08876640-0.01943766-0.0001979920.04075118-0.01314.5-0.08096640.5-0.03659466.5-0.003947392.50.0036303118.50.01715-0.009756141-0.04408467-0.0096095930.00449431190.1115.5-0.1341241.5-0.01046267.50.008611893.5-0.0023164119.50.11160.0021463420.01294868-0.01354194-0.0158191200.1116.5-0.04606942.50.003894768.5-0.02387994.50.00051927120.50.0817-0.01853343.50.01422469.5-0.0166395.50.026118121.5-0.023180.010276440.0007726870-0.01047996-0.0078193122-0.0618.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01319-0.0288245-0.018659710.03390797.5-0.0045113123.50.03220
13 0.019509 39 -0.018129 65 -0.0046855 91 0.046367 117 -0.000 13.5 -0.28473 39.5 -0.01009 65.5 0.0074987 91.5 0.053188 117.5 1.1263 14 -0.088766 40 -0.019437 66 -0.0001979 92 0.04075 118 -0.017 14.5 -0.080966 40.5 -0.036594 66.5 -0.0039473 92.5 0.0036303 118.5 0.017 15 -0.00097561 41 -0.044084 67 -0.0096095 93 0.0044943 119 0.11 15.5 -0.13412 41.5 -0.010462 67.5 0.0086118 93.5 -0.0023164 119.5 0.11 16.5 -0.046069 42.5 0.012948 68.5 -0.023879 94.5 0.0051927 120.5 0.08 17 -0.018533 43.5 0.014224 69.5 -0.01463 95.5 0.026118 121.5 -0.023
13.3 -0.28473 39.5 -0.01009 65.5 0.0074987 91.5 0.053188 117.5 1.126 14 -0.088766 40 -0.019437 66 -0.0001979 92 0.04075 118 -0.01 14.5 -0.080966 40.5 -0.036594 66.5 -0.0039473 92.5 0.0036303 118.5 0.017 15 -0.00097561 41 -0.044084 67 -0.0096095 93 0.0044943 119 0.11 15.5 -0.13412 41.5 -0.010462 67.5 0.0086118 93.5 -0.0023164 119.5 0.11 16.5 -0.046069 42.5 0.0038947 68.5 -0.023879 94.5 0.00051927 12.0 0.01 17 -0.0070991 43 0.012519 69 -0.024753 95 0.01727 121 0.081 17.5 -0.018533 43.5 0.014224 69.5 -0.010463 95.5 0.026118 121.5 -0.023 18 0.010276 44.5 -0.036366 70.5 9.3398e-059
14-0.08876640-0.01943766-0.0001979920.04075118-0.0114.5-0.08096640.5-0.03659466.5-0.003947392.50.0036303118.50.01715-0.009756141-0.04408467-0.0096095930.00449431190.1115.5-0.1341241.5-0.01046267.50.008611893.5-0.0023164119.50.11160.0021463420.01294868-0.01354194-0.0158191200.1116.5-0.04606942.50.003894768.5-0.02387994.50.00051927120.50.08817-0.0070991430.01251969-0.024753950.017271210.08117.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.02180.010276440.0007726870-0.01047996-0.0078193122-0.0618.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.0119-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.0061674124.0.0220.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.1321
14.5-0.08096640.5-0.03659466.5-0.003947392.50.0036303118.50.01715-0.0009756141-0.04408467-0.0096095930.00449431190.1115.5-0.1341241.5-0.01046267.50.008611893.5-0.0023164119.50.11160.0021463420.01294868-0.01354194-0.0158191200.1116.5-0.04606942.50.003894768.5-0.02387994.50.00051927120.50.08017-0.070991430.01251969-0.024753950.017271210.08117.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.023180.010276440.0007726870-0.01047996-0.0078193122-0.06718.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01319-0.0288245-0.018659710.03435597-0.00280571230.02219.5-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.000616741240.02220.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.132
15-0.0009756141-0.04408467-0.0096095930.00449431190.1115.5-0.1341241.5-0.01046267.50.008611893.5-0.0023164119.50.11160.0021463420.01294868-0.01354194-0.0158191200.1116.5-0.04606942.50.003894768.5-0.02387994.50.00051927120.50.08017-0.0070991430.01251969-0.024753950.017271210.08117.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.023180.010276440.0007726870-0.01047996-0.0078193122-0.06118.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01319-0.00288245-0.018659710.03435597-0.00280571230.02219.5-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.000616741240.02920.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.1321-0.08566147-0.002306730.020745990.0724151250.058
15.5-0.1341241.5-0.01046267.50.008611893.5-0.0023164119.50.11160.0021463420.01294868-0.01354194-0.0158191200.1116.5-0.04606942.50.003894768.5-0.02387994.50.00051927120.50.08017-0.0070991430.01251969-0.024753950.017271210.08117.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.023180.010276440.0007726870-0.01047996-0.0078193122-0.06118.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01319-0.0288245-0.018659710.03435597-0.00280571230.02219.5-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.000616741240.02520.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.1321-0.08566147-0.002306730.020745990.0724151250.058
160.0021463420.01294868-0.01354194-0.0158191200.1116.5-0.04606942.50.003894768.5-0.02387994.50.00051927120.50.08017-0.0070991430.01251969-0.024753950.017271210.08117.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.023180.010276440.0007726870-0.01047996-0.0078193122-0.06118.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01219-0.00288245-0.018659710.03435597-0.00280571230.02219.5-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.040611124.50.02520.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.05821-0.08566147-0.002306730.020745990.0724151250.058
16.5 -0.046069 42.5 0.0038947 68.5 -0.023879 94.5 0.00051927 120.5 0.080 17 -0.0070991 43 0.012519 69 -0.024753 95 0.01727 121 0.081 17.5 -0.018533 43.5 0.014224 69.5 -0.010663 95.5 0.026118 121.5 -0.023 18 0.010276 44 0.00077268 70 -0.010479 96 -0.0078193 122 -0.067 18.5 0.013621 44.5 -0.036366 70.5 9.3398e-05 96.5 -0.0014282 122.5 -0.013 19 -0.02882 45 -0.018659 71 0.034355 97 -0.0028057 123 0.022 19.5 -0.028721 45.5 -0.0076479 71.5 0.033907 97.5 -0.0045113 123.5 0.032 20 -0.13922 46 -0.011046 72 0.026284 98 0.00061674 124 0.025 20.5 -0.15701 46.5 -0.012204 72.5 0.011313
17-0.0070991430.01251969-0.024753950.017271210.08117.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.023180.010276440.0007726870-0.01047996-0.0078193122-0.06718.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01319-0.00288245-0.018659710.03435597-0.00280571230.02219.5-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.000616741240.02920.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.13321-0.08566147-0.002306730.020745990.0724151250.058
17.5-0.01853343.50.01422469.5-0.01066395.50.026118121.5-0.021180.010276440.0007726870-0.01047996-0.0078193122-0.06118.50.01362144.5-0.03636670.59.3398e-0596.5-0.0014282122.5-0.01119-0.00288245-0.018659710.03435597-0.00280571230.02219.5-0.02872145.5-0.007647971.50.03390797.5-0.0045113123.50.03220-0.1392246-0.011046720.026284980.000616741240.02520.5-0.1570146.5-0.01220472.50.01131398.50.040611124.50.13321-0.08566147-0.002306730.020745990.0724151250.058
18 0.010276 44 0.00077268 70 -0.010479 96 -0.0078193 122 -0.06 18.5 0.013621 44.5 -0.036366 70.5 9.3398e-05 96.5 -0.0014282 122.5 -0.01 19 -0.002882 45 -0.018659 71 0.034355 97 -0.0028057 123 0.022 19.5 -0.028721 45.5 -0.0076479 71.5 0.033907 97.5 -0.0045113 123.5 0.032 20 -0.13922 46 -0.011046 72 0.026284 98 0.00061674 124 0.029 20.5 -0.15701 46.5 -0.012204 72.5 0.011313 98.5 0.040611 124.5 0.133 21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
18.5 0.013621 44.5 -0.036366 70.5 9.3398e-05 96.5 -0.0014282 122.5 -0.01 19 -0.002882 45 -0.018659 71 0.034355 97 -0.0028057 123 0.022 19.5 -0.028721 45.5 -0.0076479 71.5 0.033907 97.5 -0.0045113 123.5 0.032 20 -0.13922 46 -0.011046 72 0.026284 98 0.00061674 124 0.025 20.5 -0.15701 46.5 -0.012204 72.5 0.011313 98.5 0.040611 124.5 0.13 21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
19 -0.002882 45 -0.018659 71 0.034355 97 -0.0028057 123 0.022 19.5 -0.028721 45.5 -0.0076479 71.5 0.033907 97.5 -0.0045113 123.5 0.032 20 -0.13922 46 -0.011046 72 0.026284 98 0.00061674 124 0.025 20.5 -0.15701 46.5 -0.012204 72.5 0.011313 98.5 0.040611 124.5 0.133 21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
19.5 -0.028721 45.5 -0.0076479 71.5 0.033907 97.5 -0.0045113 123.5 0.032 20 -0.13922 46 -0.011046 72 0.026284 98 0.00061674 124 0.029 20.5 -0.15701 46.5 -0.012204 72.5 0.011313 98.5 0.040611 124.5 0.133 21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
20 -0.13922 46 -0.011046 72 0.026284 98 0.00061674 124 0.029 20.5 -0.15701 46.5 -0.012204 72.5 0.011313 98.5 0.040611 124.5 0.133 21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
20.5 -0.15701 46.5 -0.012204 72.5 0.011313 98.5 0.040611 124.5 0.13 21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
21 -0.085661 47 -0.002306 73 0.020745 99 0.072415 125 0.058
21.5 0.034727 47.5 -4.0949e-05 73.5 -0.0064689 99.5 0.053118 125.5 0.022
22 0.038034 48 -0.038985 74 -0.030131 100 0.050789 126 0.061
22.5 0.021192 48.5 -0.035863 74.5 -0.025185 100.5 0.035108 126.5 0.21
23 0.045877 49 -0.018383 75 -0.020842 101 0.020846 127 0.23
23.5 0.0076195 49.5 0.0019767 75.5 -0.026891 101.5 -0.028024 127.5 0.24
24 -0.041485 50 0.004295 76 -0.039033 102 -0.010518
24 -0.041485 50 0.004295 76 -0.039033 102 -0.010518 24.5 -0.085087 50.5 0.027737 76.5 -0.0094929 102.5 0.012406
24 -0.041485 50 0.004295 76 -0.039033 102 -0.010518 24.5 -0.085087 50.5 0.027737 76.5 -0.0094929 102.5 0.012406 25 -0.012293 51 0.043966 77 -0.008026 103 0.022719

Раздел «Автоматика. Энергетика. ИКТ» 🔳

находится обратным преобразованием Фурье, соответственно длина дискретного сигнала будет в 2 раза короче (т.е. состоит из 128 чисел).

Заключение

В результате полученных расчетов исходный сигнал передающей антенны имеет широкий спектр (рисунки 6-7) и длительность зондирующего импульса составляет 0,5-1 нс (рисунки 8-9). По найденным спектрам источника, с использованием обратных преобразований Фурье, восстановлен сам излучаемый источник в табличной форме. Методика восстановления источника проведена при различных местоположениях антенны приемника от антенны источника. Проведенные серии численных расчетов показывают эффективность рассматриваемой математической модели по восстановлению источника.

СПИСОК ЛИТЕРАТУРЫ

- 1. Александров П.Н. Теоретические основы георадарного метода. Москва: Физматлит, 2017. 112 с.
- 2. Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сиб. Научное издательство. 2018. 511 с.
- 3. Искаков К.Т., Романов В.Г., Карчевский А.Л., Оралбекова Ж.О. Исследование обратных задач для дифференциальных уравнений и численных методов их решения. Астана: Изд-во ЕНУ им. Л.Н. Гумилева, 2014. 181 с.
- 4. Mukanova B.G., Romanov V.G. Inverse source problem for wave equation and GPR data interpretation problem, Eurasian Journal of Mathematical and Computer Applications. Vol. 4(3), 2016, 15-28.
- 5. Mukanova B.G., Iskakov K.T., Kembay A., Boranbaev S.A. Inverse Source Identification Problem for the Wave Equation: An Application for Interpreting GPR Data // Eurasian Journal of Mathematical and Computer Applications. 2020. Vol.8. issue 3., 78-91 p. DOI:10.32523/2306-6172-2016-4-3-15-28.
- Тоқсеит Д.Қ., Искаков К.Т., Кабанихин С.И., Шишленин М.А. Программа расчета математической модели по определению отклика среды и выявления неоднородности // Свидетельство о внесении сведений в государственный реестр прав на объекты, охраняемые авторским правом. – № 12894 от 28 октября 2020 года.
- 7. Токсеит Д.К., Боранбаев С.А., Оралбекова Ж.О., Нуржанова А.Б. Определения геоэлектрического разреза по георадарным данным // Вестник Восточно-Казахстанского государственного технического университета имени Д. Серикбаева / 2020. № 3. 154-160 с.
- Токсеит Д.К., Искаков К.Т., Боранбаев С.А. Интерпретации радарограмм геологического разреза на основе экспериментальных расчетных формул // Свидетельство о внесении сведений в государственный реестр прав на объекты, охраняемые авторским правом. – № 9319 от 20 апреля 2020 года.
- 9. S.I. Kabanikhin, K.T. Iskakov, B.B. Sholpanbaev, M.A. Shishlenin, D.K. Tokseit. Development of a mathematical model for signal processing using laboratory data. Bulletin of the Karaganda University-Mathematics. (2018). Vol. 92, no. 4. pp. 148-157.
- 10. Shishlenin, M.A., Kasenov, S.E., Askerbekova, Z.A. Numerical algorithm for solving the inverse problem for the Helmholtz equation. (2019). Communications in Computer and Information Science. Vol. 998. pp. 197-207.
- Карчевский А.Л. Аналитические решения дифференциального уравнения поперечных колебаний кусочно-однородной балки в частотной области для краевых условий любого вида // Сиб. журн. индустр. матем., 23:4 (2020), 48-68; J. Appl. Industr. Math., 14:4 (2020), 648-665.

Георадар шығаратын бастапқы сигналдарды өңдеу әдісі

¹ТОКСЕИТ Динара Қуандыққызы, докторант, dicow1@mail.ru,

¹*ИСКАКОВ Казизат Такуадинович, ф.-м.ғ.д., профессор, kazizat@mail.ru,

¹БОРАНБАЕВ Самат Акшабаевич, аға оқытушы, boranbaev_sa@mail.ru,

¹Л.Н. Гумилев атындағы Еуразия ұлттық университеті, Қазақстан, 010008, Нұр-Сұлтан, Сәтпаев көшесі, 2, *автор-корреспондент.

*автор-корреспоноент.

Аңдатпа. Жұмыста Loza-V сериясының георадар деректері бойынша көздің кестелік мәнін қалпына келтіру алгоритмі қарастырылған. Цилиндрлік координаттар жүйесіндегі геоэлектриктердің теңдеуінің математикалық моделі қарастырылған. Көзді қалпына келтіру үшін белгілі геофизикалық қасиеттері бар «таза құм» учаскесінде эксперименттер жүргізілді: диэлектрлік өткізгіштік, өткізгіштік. Орташа үлгіні осындай таңдау кезінде қарастырылып отырған геоэлектрлік теңдеу Риккати дифференциалдық теңдеуіне келтіріледі. Ол үшін функцияның спектрін – нақты радар деректерін және көзді сипаттайтын функцияның спектрін байланыстыратын айқын аналитикалық шешім аламыз. Кері Фурье түрлендіруін көздің есептелген спектрлеріне қолдану арқылы көз кестелік форматта қайта құрылады. Эксперименттік зерттеулер Loza-V георадар антеннасының әртүрлі орындарында жүргізілді. Сандық есептеулердің нәтижелері көзді қалпына келтірудің математикалық моделінің тиімділігін көрсетеді.

Кілт сөздер: геоэлектрлік теңдеу, георадар, математикалық модель, цилиндрлік координаттар жүйесі, Рикатти теңдеулері, қайта есептеу әдісі, кері Фурье түрлендіруі, тәжірибелік зерттеулер, радарграмма ізінің спектрі, бастапқы спектр.

■ Труды университета №1 (86) • 2022

Technique for Processing Signals from a Source Emitted By a Georadar

¹TOKSEIT Dinara, doctoral student, dicow1@mail.ru,
 ¹*ISKAKOV Kazizat, Dr. of Phys. and Math. Sci., Professor, kazizat@mail.ru,
 ¹BORANBAEV Samat, Senior Lecturer, boranbaev_sa@mail.ru,
 ¹L.N. Gumilyov Eurasian National University, Kazakhstan, 010008, Nur-Sultan, Satpayev Street, 2,

*corresponding author.

Abstract. The paper considers the algorithm for restoring the table value of the source on the data of the georadar of the Loza-V series. A mathematical model of the equation of geoelectrics in a cylindrical coordinate system is considered. To restore the source, experiments were carried out on the «clean sand» site, with known geophysical properties: dielectric constant, conductivity. With such a choice of the medium model, the geoelectrical equation under consideration is reduced to the Riccati differential equation. For which we will obtain an explicit analytical solution connecting the spectrum of the function - real radar data and the spectrum of the function describing the source. By applying the inverse Fourier transform over the calculated spectra of the source, the source is reconstructed in a tabular format. Experimental studies have been carried out at various locations of the Loza-V georadar antenna. The results of numerical calculations show the effectiveness of the mathematical model for source recovery.

Keywords: geoelectric equation, georadar, mathematical model, cylindrical coordinate system, Ricatti equations, layerby-layer recalculation method, inverse Fourier transform, experimental studies, radargram trace spectrum, source spectrum.

REFERENCES

- 1. Aleksandrov P.N. Teoreticheskie osnovy georadarnogo metoda. Moscow. Fizmatlit, 2017. 112 p.
- 2. Kabanihin S.I. Obratnye i nekorrektnye zadachi. Novosibirsk: Sib. Nauchnoe izdatel'stvo. 2018. 511 p.
- 3. Iskakov K.T. Romanov V.G., Karchevskij A.L., Oralbekova ZH.O. Issledovanie obratnyh zadach dlya differencial'nyh uravnenij i chislennyh metodov ih resheniya. Astana: Publ. ENU im. L.N. Gumileva, 2014. 181 p.
- 4. Mukanova B.G., Romanov V.G. Inverse source problem for wave equation and GPR data interpretation problem, Eurasian Journal of Mathematical and Computer Applications. Vol. 4(3), 2016, 15-28.
- Mukanova B.G., Iskakov K.T., Kembay A., Boranbaev S.A. Inverse Source Identification Problem for the Wave Equation: An Application for Interpreting GPR Data // Eurasian Journal of Mathematical and Computer Applications. – 2020. – Vol.8. – issue 3., 78-91 p. – DOI:10.32523/2306-6172-2016-4-3-15-28.
- Tokseit D.K., Iskakov K.T., Kabanihin S.I., SHishlenin M.A. Programma rascheta matematicheskoj modeli po opredeleniyu otklika sredy i vyyavleniya neodnorodnosti // Svidetel'stvo o vnesenii svedenij v gosudarstvennyj reestr prav na ob"ekty, ohranyaemye avtorskim pravom. – No. 12894 ot 28 oktyabrya 2020 goda.
- Tokseit D.K., Boranbaev S.A., Oralbekova ZH.O., Nurzhanova A.B. Opredeleniya geoelektricheskogo razreza po georadarnym dannym // Vestnik Vostochno-Kazahstanskogo gosudarstvennogo tekhnicheskogo universiteta imeni D. Serikbaeva / 2020, no. 3. – pp. 154-160.
- Tokseit D.K., Iskakov K.T., Boranbaev S.A. Interpretacii radarogramm geologicheskogo razreza na osnove eksperimental'nyh raschetnyh formul // Svidetel'stvo o vnesenii svedenij v gosudarstvennyj reestr prav na ob"ekty, ohranyaemye avtorskim pravom. – No. 9319 ot 20 aprelya 2020 goda.
- 9. S.I. Kabanikhin, K.T. Iskakov, B.B. Sholpanbaev, M.A. Shishlenin, D.K. Tokseit. Development of a mathematical model for signal processing using laboratory data. Bulletin of the Karaganda University-Mathematics. (2018). Vol. 92, no. 4. pp. 148-157.
- 10. Shishlenin, M.A., Kasenov, S.E., Askerbekova, Z.A. Numerical algorithm for solving the inverse problem for the Helmholtz equation. (2019). Communications in Computer and Information Science. Vol. 998. pp. 197-207.
- 11. Karchevskij A.L. Analiticheskie resheniya differencial'nogo uravneniya poperechnyh kolebanij kusochno-odnorodnoj balki v chastotnoj oblasti dlya kraevyh uslovij lyubogo vida // Sib. zhurn. industr. matem., 23:4 (2020), 48-68; J. Appl. Industr. Math., 14:4 (2020), 648-665.